亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Spectral Grouping and Attention-Driven Residual Dense Network for Hyperspectral Image Super-Resolution

高光谱成像 计算机科学 人工智能 块(置换群论) 光谱带 卷积(计算机科学) 光谱分辨率 卷积神经网络 特征(语言学) 模式识别(心理学) 残余物 全光谱成像 图像分辨率 光谱特征 遥感 人工神经网络 数学 算法 谱线 地质学 物理 语言学 哲学 几何学 天文
作者
Denghong Liu,Jie Li,Qiangqiang Yuan
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:59 (9): 7711-7725 被引量:78
标识
DOI:10.1109/tgrs.2021.3049875
摘要

Although unprecedented success has been achieved in convolutional neural network (CNN)-based super-resolution (SR) for natural images, hyperspectral image (HSI) SR without auxiliary high-resolution images remains a challenging task due to the high spectral dimensionality, where learning effective spatial and spectral representations is of great importance. In this article, we introduce a novel CNN-based HSI SR method, termed spectral grouping and attention-driven residual dense network (SGARDN) to facilitate the modeling of all spectral bands and focus on the exploration of spatial-spectral features. Considering the block characteristic of HSI, we employ group convolutions in and between groups composed of highly similar spectral bands at early stages to extract informative spatial features and avoid spectral disorder caused by normal convolution. To exploit spectral prior, a new spectral attention mechanism constructed by covariance statistics of features is designed to adaptively recalibrate features. We adapt the spectral attention for group convolutions to rescale grouping features with holistic spectral information. These two sequential operations called spectral grouping and integration module aim to extract effective shallow spatial-spectral features that are reused in the following layers. On the other hand, the residual dense block can better deal with spatial-spectral features by experimental comparison and hence is combined with the spectral attention to form a new basic building block for powerful feature expression and spectral correlation learning. The experimental results on synthesized and real-scenario HSIs demonstrate the feasibility and superiority of the proposed method over other state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
12秒前
seven发布了新的文献求助10
12秒前
这橘不甜发布了新的文献求助30
15秒前
高星星完成签到,获得积分10
16秒前
科研通AI2S应助悦耳破茧采纳,获得10
18秒前
小武wwwww完成签到 ,获得积分10
20秒前
大碗完成签到 ,获得积分10
42秒前
43秒前
1分钟前
李洁完成签到 ,获得积分10
1分钟前
1分钟前
情怀应助科研通管家采纳,获得30
1分钟前
乐乐应助科研通管家采纳,获得10
1分钟前
等待凝海完成签到 ,获得积分10
1分钟前
1分钟前
思源应助www采纳,获得10
1分钟前
lrl350495627完成签到,获得积分10
2分钟前
2分钟前
科研通AI5应助yyy采纳,获得10
2分钟前
十一发布了新的文献求助10
2分钟前
英姑应助十一采纳,获得10
2分钟前
2分钟前
2分钟前
yyy发布了新的文献求助10
2分钟前
柚哦发布了新的文献求助10
2分钟前
碗碗完成签到,获得积分10
2分钟前
seven完成签到,获得积分10
2分钟前
Dale完成签到,获得积分10
2分钟前
andrele应助yyy采纳,获得10
2分钟前
orixero应助lalalatiancai采纳,获得10
2分钟前
小孙完成签到,获得积分10
2分钟前
coco完成签到,获得积分10
3分钟前
3分钟前
3分钟前
lalalatiancai发布了新的文献求助10
3分钟前
吃了吃了完成签到,获得积分10
3分钟前
搜集达人应助科研通管家采纳,获得10
3分钟前
顺利白竹完成签到 ,获得积分10
3分钟前
TXZ06完成签到,获得积分10
3分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795549
求助须知:如何正确求助?哪些是违规求助? 3340566
关于积分的说明 10300530
捐赠科研通 3057093
什么是DOI,文献DOI怎么找? 1677428
邀请新用户注册赠送积分活动 805404
科研通“疑难数据库(出版商)”最低求助积分说明 762499