Prognostic Correlation of Glycolysis-Related Gene Signature in Patients with Laryngeal Cancer

比例危险模型 医学 肿瘤科 内科学 基因签名 单变量 基因 糖酵解 多元分析 多元统计 基因表达 列线图 生存分析 生物 遗传学 新陈代谢 统计 数学
作者
Zhao Ding,Deshun Yu,Hefeng Li,Yueming Ding
出处
期刊:The American Journal of the Medical Sciences [Elsevier BV]
卷期号:362 (2): 161-172 被引量:8
标识
DOI:10.1016/j.amjms.2020.12.021
摘要

Background Aerobic glycolysis is one of the metabolic characteristics of tumor cells, which is regulated by many genes. The aim of our study was to construct glycolysis-related gene signature to accurately predict the prognosis of laryngeal cancer (LC) patients. Methods We analyzed the mRNA expression profiles of LC patients from The Cancer Genome Atlas (TCGA). Eleven glycolysis-related gene sets were analyzed by gene set enrichment analysis (GSEA). In order to acquire the gene signature related to prognosis, we used univariate and multivariate Cox regression analysis. Results We confirmed that a gene signature composed of two genes (STC2, LHPP) can predict the overall survival (OS) of patients with LC. Based on each patient's risk score, we found that the survival results of patients in the high-risk group were significantly lower than those in the low-risk group (log‐rank test P‐value=0.002). Multivariate Cox regression analysis confirmed that gene signature could independently predict OS in LC patients (HR = 1.981, 95% CI 1.446–2.714 P<0.001). In addition, a nomogram including the age, sex, grade and risk score was constructed. The nomogram demonstrated good accuracy for OS prediction, with a C-index of 0.752. Conclusion The glycolysis-related two-gene risk score model could be used as a biomarker for LC prognosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
快乐的乐巧完成签到,获得积分10
1秒前
1秒前
hullu发布了新的文献求助10
1秒前
BruceKKKK发布了新的文献求助10
2秒前
无奈完成签到,获得积分10
2秒前
fuhao完成签到,获得积分10
2秒前
辻渃完成签到,获得积分10
2秒前
北风完成签到 ,获得积分10
2秒前
Ava应助橘子海采纳,获得10
3秒前
yss完成签到,获得积分10
3秒前
4秒前
bkagyin应助yeyongchang_hit采纳,获得10
4秒前
4秒前
小浣熊完成签到 ,获得积分10
4秒前
小二郎应助小垃圾采纳,获得10
4秒前
516165165发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
lyfsci完成签到,获得积分20
6秒前
友好的牛排完成签到,获得积分10
7秒前
WXHL发布了新的文献求助30
9秒前
yc发布了新的文献求助10
9秒前
9秒前
lyfsci发布了新的文献求助10
10秒前
12秒前
12秒前
fffff完成签到,获得积分10
12秒前
科研通AI5应助管理想采纳,获得10
14秒前
等待的惜海完成签到,获得积分10
16秒前
16秒前
17秒前
Lin完成签到 ,获得积分10
18秒前
19秒前
搜集达人应助执着的若灵采纳,获得10
20秒前
Nancy发布了新的文献求助10
20秒前
852应助zyp采纳,获得10
21秒前
小马甲应助Wjh123456采纳,获得10
22秒前
路奇发布了新的文献求助30
23秒前
F503完成签到,获得积分10
24秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793698
求助须知:如何正确求助?哪些是违规求助? 3338599
关于积分的说明 10290546
捐赠科研通 3055010
什么是DOI,文献DOI怎么找? 1676285
邀请新用户注册赠送积分活动 804326
科研通“疑难数据库(出版商)”最低求助积分说明 761836