清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

An interpretable framework of data-driven turbulence modeling using deep neural networks

物理 湍流 人工神经网络 统计物理学 人工智能 气象学 计算机科学
作者
Chao Jiang,Ricardo Vinuesa,Ruilin Chen,Junyi Mi,Shujin Laima,Hui Li
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:33 (5) 被引量:18
标识
DOI:10.1063/5.0048909
摘要

Despite a cost-effective option in practical engineering, Reynolds-averaged Navier-Stokes simulations are facing the ever-growing demand for more accurate turbulence models. Recently, emerging machine learning techniques are making promising impact in turbulence modeling, but in their infancy for widespread industrial adoption. Towards this end, this work proposes a universal, inherently interpretable machine learning framework of turbulence modeling, which mainly consists of two parallel machine-learning-based modules to respectively infer the integrity basis and closure coefficients. At every phase of the model development, both data representing the evolution dynamics of turbulence and domain-knowledge representing prior physical considerations are properly fed and reasonably converted into modeling knowledge. Thus, the developed model is both data- and knowledge-driven. Specifically, a version with pre-constrained integrity basis is provided to demonstrate detailedly how to integrate domain-knowledge, how to design a fair and robust training strategy, and how to evaluate the data-driven model. Plain neural network and residual neural network as the building blocks in each module are compared. Emphases are made on three-fold: (i) a compact input feature parameterizing the newly-proposed turbulent timescale is introduced to release nonunique mappings between conventional input arguments and output Reynolds stress; (ii) the realizability limiter is developed to overcome under-constraint of modeled stress; and (iii) constraints of fairness and noisy-sensitivity are first included in the training procedure. In such endeavors, an invariant, realizable, unbiased and robust data-driven turbulence model is achieved, and does gain good generalization across channel flows at different Reynolds numbers and duct flows with various aspect ratios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
zhuosht完成签到 ,获得积分10
6秒前
文天发布了新的文献求助10
8秒前
cdercder应助科研通管家采纳,获得20
9秒前
Singularity应助科研通管家采纳,获得10
9秒前
乐观的星月完成签到 ,获得积分10
16秒前
默默的筝完成签到 ,获得积分10
20秒前
小昕思完成签到 ,获得积分10
24秒前
蓝意完成签到,获得积分0
53秒前
老姚完成签到,获得积分10
57秒前
xiongqi完成签到 ,获得积分10
1分钟前
雪山飞龙完成签到,获得积分10
1分钟前
jason完成签到 ,获得积分10
1分钟前
雪流星完成签到 ,获得积分10
1分钟前
Mipe完成签到,获得积分10
1分钟前
阿越爱学习完成签到,获得积分10
1分钟前
19950728完成签到 ,获得积分10
1分钟前
凉面完成签到 ,获得积分10
1分钟前
阜睿完成签到 ,获得积分10
1分钟前
back you up应助zxp采纳,获得40
2分钟前
加纳加纳乔完成签到,获得积分20
2分钟前
桐桐应助Microbiota采纳,获得10
2分钟前
cdercder应助科研通管家采纳,获得20
2分钟前
科研通AI2S应助予秋采纳,获得10
2分钟前
路路完成签到 ,获得积分10
2分钟前
乐乐应助加纳加纳乔采纳,获得10
2分钟前
共享精神应助马婷婷采纳,获得10
2分钟前
geold完成签到,获得积分10
2分钟前
ding应助文天采纳,获得10
2分钟前
传奇3应助聪明十三采纳,获得10
2分钟前
十七完成签到 ,获得积分10
2分钟前
向日葵完成签到 ,获得积分10
3分钟前
3分钟前
LELE完成签到 ,获得积分10
3分钟前
文天发布了新的文献求助10
3分钟前
wushang完成签到 ,获得积分10
3分钟前
sh1ro完成签到,获得积分10
3分钟前
赛韓吧完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795624
求助须知:如何正确求助?哪些是违规求助? 3340665
关于积分的说明 10300952
捐赠科研通 3057168
什么是DOI,文献DOI怎么找? 1677539
邀请新用户注册赠送积分活动 805449
科研通“疑难数据库(出版商)”最低求助积分说明 762626