Shelf life prediction model of postharvest table grape using optimized radial basis function (RBF) neural network

人工神经网络 近似误差 统计 径向基函数 反向传播 数学 相对湿度 计算机科学 算法 数据挖掘 人工智能 气象学 地理
作者
Yue Li,Xiaoquan Chu,Zetian Fu,Jianying Feng,Weisong Mu
出处
期刊:British Food Journal [Emerald (MCB UP)]
卷期号:121 (11): 2919-2936 被引量:19
标识
DOI:10.1108/bfj-03-2019-0183
摘要

Purpose The purpose of this paper is to develop a common remaining shelf life prediction model that is generally applicable for postharvest table grape using an optimized radial basis function (RBF) neural network to achieve more accurate prediction than the current shelf life (SL) prediction methods. Design/methodology/approach First, the final indicators (storage temperature, relative humidity, sensory average score, peel hardness, soluble solids content, weight loss rate, rotting rate, fragmentation rate and color difference) affecting SL were determined by the correlation and significance analysis. Then using the analytic hierarchy process (AHP) to calculate the weight of each indicator and determine the end of SL under different storage conditions. Subsequently, the structure of the RBF network redesigned was 9-11-1. Ultimately, the membership degree of Fuzzy clustering (fuzzy c-means) was adopted to optimize the center and width of the RBF network by using the training data. Findings The results show that this method has the highest prediction accuracy compared to the current the kinetic–Arrhenius model, back propagation (BP) network and RBF network. The maximum absolute error is 1.877, the maximum relative error (RE) is 0.184, and the adjusted R 2 is 0.911. The prediction accuracy of the kinetic–Arrhenius model is the worst. The RBF network has a better prediction accuracy than the BP network. For robustness, the adjusted R 2 are 0.853 and 0.886 of Italian grape and Red Globe grape, respectively, and the fitting degree are the highest among all methods, which proves that the optimized method is applicable for accurate SL prediction of different table grape varieties. Originality/value This study not only provides a new way for the prediction of SL of different grape varieties, but also provides a reference for the quality and safety management of table grape during storage. Maybe it has a further research significance for the application of RBF neural network in the SL prediction of other fresh foods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Vaibhav完成签到,获得积分10
3秒前
搜集达人应助自由的映阳采纳,获得10
5秒前
逢场作戱__完成签到 ,获得积分10
5秒前
oxygen发布了新的文献求助10
5秒前
wkl完成签到,获得积分10
5秒前
6秒前
天天快乐应助徐翩跹采纳,获得10
6秒前
9秒前
有魅力的大船完成签到,获得积分10
11秒前
11秒前
12秒前
SOUAREMAMADOU发布了新的文献求助10
12秒前
14秒前
小叮当完成签到,获得积分10
14秒前
SCI关注了科研通微信公众号
14秒前
15秒前
17秒前
Mizuki发布了新的文献求助10
17秒前
LPH01发布了新的文献求助10
17秒前
18秒前
19秒前
科研通AI6应助欢喜的不尤采纳,获得10
19秒前
19秒前
20秒前
烟花应助科研通管家采纳,获得10
20秒前
领导范儿应助科研通管家采纳,获得10
20秒前
浮游应助科研通管家采纳,获得10
20秒前
脑洞疼应助科研通管家采纳,获得10
20秒前
852应助科研通管家采纳,获得10
20秒前
Owen应助科研通管家采纳,获得30
20秒前
20秒前
FashionBoy应助科研通管家采纳,获得10
20秒前
在水一方应助科研通管家采纳,获得10
21秒前
小马甲应助科研通管家采纳,获得10
21秒前
zcl应助科研通管家采纳,获得20
21秒前
大个应助科研通管家采纳,获得10
21秒前
共享精神应助科研通管家采纳,获得10
21秒前
zhonglv7应助科研通管家采纳,获得10
21秒前
CipherSage应助科研通管家采纳,获得10
21秒前
JiaMX应助科研通管家采纳,获得10
21秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5381280
求助须知:如何正确求助?哪些是违规求助? 4504712
关于积分的说明 14018995
捐赠科研通 4413867
什么是DOI,文献DOI怎么找? 2424475
邀请新用户注册赠送积分活动 1417481
关于科研通互助平台的介绍 1395246