Key Parameters of Tumor Epitope Immunogenicity Revealed Through a Consortium Approach Improve Neoantigen Prediction

表位 免疫原性 生物 计算生物学 抗原 免疫学
作者
Daniel K. Wells,Marit M. van Buuren,Kristen K. Dang,Vanessa M. Hubbard-Lucey,Kathleen C. F. Sheehan,Katie M. Campbell,Andrew Lamb,Jeffrey P. Ward,John Sidney,Ana-Belén Blázquez,Andrew J. Rech,Jesse M. Zaretsky,Begonya Comin-Anduix,Alphonsus H. C. Ng,William Chour,Thomas Yu,Hira Rizvi,Jia M. Chen,Patrice Manning,Gabriela Steiner
出处
期刊:Cell [Cell Press]
卷期号:183 (3): 818-834.e13 被引量:416
标识
DOI:10.1016/j.cell.2020.09.015
摘要

Many approaches to identify therapeutically relevant neoantigens couple tumor sequencing with bioinformatic algorithms and inferred rules of tumor epitope immunogenicity. However, there are no reference data to compare these approaches, and the parameters governing tumor epitope immunogenicity remain unclear. Here, we assembled a global consortium wherein each participant predicted immunogenic epitopes from shared tumor sequencing data. 608 epitopes were subsequently assessed for T cell binding in patient-matched samples. By integrating peptide features associated with presentation and recognition, we developed a model of tumor epitope immunogenicity that filtered out 98% of non-immunogenic peptides with a precision above 0.70. Pipelines prioritizing model features had superior performance, and pipeline alterations leveraging them improved prediction performance. These findings were validated in an independent cohort of 310 epitopes prioritized from tumor sequencing data and assessed for T cell binding. This data resource enables identification of parameters underlying effective anti-tumor immunity and is available to the research community.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助科研通管家采纳,获得10
刚刚
刚刚
pcr163应助科研通管家采纳,获得150
刚刚
KK应助科研通管家采纳,获得10
刚刚
科研通AI5应助科研通管家采纳,获得10
刚刚
FashionBoy应助科研通管家采纳,获得10
刚刚
科研小白完成签到 ,获得积分10
刚刚
CodeCraft应助科研通管家采纳,获得10
刚刚
坦率以莲发布了新的文献求助10
刚刚
侯康应助科研通管家采纳,获得10
刚刚
minminzi应助科研通管家采纳,获得10
刚刚
汉堡包应助科研通管家采纳,获得10
1秒前
不与旋覆应助科研通管家采纳,获得10
1秒前
研友_VZG7GZ应助科研通管家采纳,获得30
1秒前
KK应助科研通管家采纳,获得10
1秒前
慕青应助科研通管家采纳,获得10
1秒前
木头马尾应助科研通管家采纳,获得10
1秒前
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
bkagyin应助科研通管家采纳,获得10
1秒前
生动梦松应助科研通管家采纳,获得150
1秒前
pcr163应助科研通管家采纳,获得150
1秒前
2秒前
2秒前
star完成签到,获得积分10
2秒前
minminzi应助科研通管家采纳,获得10
2秒前
科目三应助科研通管家采纳,获得10
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
田様应助科研通管家采纳,获得10
2秒前
ephore应助科研通管家采纳,获得30
2秒前
小蘑菇应助科研通管家采纳,获得30
2秒前
赘婿应助苗条的紫文采纳,获得10
2秒前
3秒前
3秒前
抹茶夏天完成签到,获得积分10
3秒前
GYF发布了新的文献求助30
3秒前
开朗馒头完成签到,获得积分10
3秒前
3秒前
高工完成签到,获得积分10
3秒前
3秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Architectural Corrosion and Critical Infrastructure 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4860510
求助须知:如何正确求助?哪些是违规求助? 4155428
关于积分的说明 12879353
捐赠科研通 3906915
什么是DOI,文献DOI怎么找? 2146343
邀请新用户注册赠送积分活动 1165309
关于科研通互助平台的介绍 1067482