Key Parameters of Tumor Epitope Immunogenicity Revealed Through a Consortium Approach Improve Neoantigen Prediction

表位 免疫原性 生物 计算生物学 抗原 免疫学
作者
Daniel K. Wells,Marit M. van Buuren,Kristen K. Dang,Vanessa M. Hubbard-Lucey,Kathleen C. F. Sheehan,Katie M. Campbell,Andrew Lamb,Jeffrey P. Ward,John Sidney,Ana-Belén Blázquez,Andrew J. Rech,Jesse M. Zaretsky,Begonya Comin-Anduix,Alphonsus H. C. Ng,William Chour,Thomas Yu,Hira Rizvi,Jia M. Chen,Patrice Manning,Gabriela Steiner,Xengie Doan,Taha Merghoub,Justin Guinney,Adam Kolom,Cheryl Selinsky,Antoni Ribas,Matthew D. Hellmann,Nir Hacohen,Alessandro Sette,James R. Heath,Nina Bhardwaj,Fred Ramsdell,Robert D. Schreiber,Ton N. Schumacher,Pia Kvistborg,Nadine A. Defranoux,Aly A. Khan,Amit A. Lugade,Ana Mijalkovic Lazic,Angela Frentzen,Arbel D. Tadmor,Ariella Sasson,Arjun A. Rao,Baikang Pei,Barbara Schrörs,Beata Berent-Maoz,Beatriz M. Carreno,Bin Song,Bjoern Peters,Bo Li,Brandon W. Higgs,Brian J. Stevenson,Christian Iseli,Christopher A. Miller,Christopher Morehouse,Cornelis J.M. Melief,Cristina Puig-Saus,Daphne M. van Beek,David Balli,David Gfeller,David Haussler,Dirk Jäger,Eduardo Cortes,Ekaterina Esaulova,Elham Sherafat,Francisco Arcila,Gábor Bartha,Geng Liu,George Coukos,Guilhem Richard,Chang Han,Han Si,Inka Zörnig,Ioannis Xénarios,Ion Măndoiu,Irsan Kooi,James Conway,Jan H. Kessler,Jason Greenbaum,Jason Perera,Jason Harris,Jasreet Hundal,Jennifer Shelton,Jianmin Wang,Jiaqian Wang,Joel Greshock,Jonathon Blake,Joseph D. Szustakowski,Julia Kodysh,Juliet Forman,Lei Wei,Leo J. Lee,Lorenzo F. Fanchi,Maarten Slagter,Maren Lang,Markus S. Mueller,Martin Löwer,Mathias Vormehr,Maxim N. Artyomov,Michael Kuziora,Michael F. Princiotta,Michal Bassani‐Sternberg,Mignonette H. Macabali,Milica Kojicic,Naibo Yang,Nevena M. Ilic Raicevic,Nicolas Guex,Nicolas Robine,Niels Halama,Nikola Skundric,Ognjen Milićević,Pascal Gellert,Patrick Jongeneel,Pornpimol Charoentong,Pramod K. Srivastava,Prateek Tanden,Priyanka Shah,Qiang Hu,Ravi Gupta,Richard Chen,Robert G. Petit,Robert Ziman,Rolf Hilker,Sachet A. Shukla,Sahar Al Seesi,Sean M. Boyle,Si Qiu,Siranush Sarkizova,Sofie R. Salama,Song Liu,Song Wu,Sriram Sridhar,Steven L. C. Ketelaars,Suchit Jhunjhunwala,Tatiana Shcheglova,Thierry Schuepbach,Todd Creasy,Veliborka Josipovic,Vladimir Kovačević,Weixuan Fu,Willem-Jan Krebber,Yi‐Hsiang Hsu,Yinong Sebastian,Zeynep Koşaloğlu,Zhiqin Huang
出处
期刊:Cell [Cell Press]
卷期号:183 (3): 818-834.e13 被引量:361
标识
DOI:10.1016/j.cell.2020.09.015
摘要

Many approaches to identify therapeutically relevant neoantigens couple tumor sequencing with bioinformatic algorithms and inferred rules of tumor epitope immunogenicity. However, there are no reference data to compare these approaches, and the parameters governing tumor epitope immunogenicity remain unclear. Here, we assembled a global consortium wherein each participant predicted immunogenic epitopes from shared tumor sequencing data. 608 epitopes were subsequently assessed for T cell binding in patient-matched samples. By integrating peptide features associated with presentation and recognition, we developed a model of tumor epitope immunogenicity that filtered out 98% of non-immunogenic peptides with a precision above 0.70. Pipelines prioritizing model features had superior performance, and pipeline alterations leveraging them improved prediction performance. These findings were validated in an independent cohort of 310 epitopes prioritized from tumor sequencing data and assessed for T cell binding. This data resource enables identification of parameters underlying effective anti-tumor immunity and is available to the research community.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
像棉花糖的云完成签到,获得积分10
刚刚
1秒前
科研通AI5应助霍师傅采纳,获得10
1秒前
2秒前
3秒前
4秒前
duhp发布了新的文献求助10
4秒前
wanci应助梁世秀采纳,获得10
7秒前
8秒前
培根肉松发布了新的文献求助10
9秒前
ZhiningZ完成签到 ,获得积分10
10秒前
11秒前
Gakay发布了新的文献求助10
11秒前
Ava应助w934420513采纳,获得10
12秒前
CipherSage应助辛勤又蓝采纳,获得10
12秒前
Lynx2025发布了新的文献求助20
14秒前
英姑应助科研通管家采纳,获得10
14秒前
领导范儿应助科研通管家采纳,获得10
14秒前
动听半雪发布了新的文献求助10
14秒前
英俊的铭应助科研通管家采纳,获得10
14秒前
星辰大海应助科研通管家采纳,获得10
14秒前
14秒前
Owen应助科研通管家采纳,获得10
14秒前
三里墩头应助科研通管家采纳,获得10
14秒前
英俊的铭应助科研通管家采纳,获得10
14秒前
FashionBoy应助科研通管家采纳,获得10
14秒前
星辰大海应助科研通管家采纳,获得30
14秒前
爆米花应助科研通管家采纳,获得10
14秒前
JamesPei应助科研通管家采纳,获得10
15秒前
星辰大海应助科研通管家采纳,获得10
15秒前
ding应助科研通管家采纳,获得10
15秒前
KDC完成签到,获得积分10
17秒前
科研通AI2S应助柒咩咩采纳,获得10
18秒前
yztz应助yzee采纳,获得10
22秒前
23秒前
23秒前
共享精神应助如意草丛采纳,获得10
23秒前
duhp完成签到,获得积分10
24秒前
半柚发布了新的文献求助10
28秒前
29秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778226
求助须知:如何正确求助?哪些是违规求助? 3323870
关于积分的说明 10216390
捐赠科研通 3039102
什么是DOI,文献DOI怎么找? 1667782
邀请新用户注册赠送积分活动 798389
科研通“疑难数据库(出版商)”最低求助积分说明 758366