DIESEL: A Dataset-Based Distributed Storage and Caching System for Large-Scale Deep Learning Training

计算机科学 深度学习 人工神经网络 可扩展性 比例(比率) 人工智能 卷积神经网络
作者
Lipeng Wang,Ye Songgao,Baichen Yang,Youyou Lu,Hequan Zhang,Shengen Yan,Qiong Luo
出处
期刊:International Conference on Parallel Processing 被引量:5
标识
DOI:10.1145/3404397.3404472
摘要

We observe three problems in existing storage and caching systems for deep-learning training (DLT) tasks: (1) accessing a dataset containing a large number of small files takes a long time, (2) global in-memory caching systems are vulnerable to node failures and slow to recover, and (3) repeatedly reading a dataset of files in shuffled orders is inefficient when the dataset is too large to be cached in memory. Therefore, we propose DIESEL, a dataset-based distributed storage and caching system for DLT tasks. Our approach is via a storage-caching system co-design. Firstly, since accessing small files is a metadata-intensive operation, DIESEL decouples the metadata processing from metadata storage, and introduces metadata snapshot mechanisms for each dataset. This approach speeds up metadata access significantly. Secondly, DIESEL deploys a task-grained distributed cache across the worker nodes of a DLT task. This way node failures are contained within each DLT task. Furthermore, the files are grouped into large chunks in storage, so the recovery time of the caching system is reduced greatly. Thirdly, DIESEL provides chunk-based shuffle so that the performance of random file access is improved without sacrificing training accuracy. Our experiments show that DIESEL achieves a linear speedup on metadata access, and outperforms an existing distributed caching system in both file caching and file reading. In real DLT tasks, DIESEL halves the data access time of an existing storage system, and reduces the training time by hours without changing any training code.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
XF发布了新的文献求助10
1秒前
cyanocitta完成签到,获得积分10
2秒前
希望天下0贩的0应助路灯采纳,获得10
2秒前
2秒前
2秒前
CHEN发布了新的文献求助30
2秒前
www完成签到 ,获得积分10
2秒前
小郭发布了新的文献求助10
2秒前
脑洞疼应助小鳄鱼爱洗澡采纳,获得10
3秒前
CipherSage应助畅快梦容采纳,获得10
3秒前
zym完成签到,获得积分20
3秒前
yanhuazi发布了新的文献求助10
4秒前
可爱的函函应助欣喜代秋采纳,获得10
4秒前
5秒前
LLM完成签到,获得积分10
5秒前
七七完成签到,获得积分20
5秒前
IyGnauH完成签到 ,获得积分10
5秒前
6秒前
xhsz1111发布了新的文献求助10
6秒前
6秒前
6秒前
纯真的听寒完成签到,获得积分10
6秒前
7秒前
思思发布了新的文献求助10
7秒前
8秒前
8秒前
Tong完成签到,获得积分10
8秒前
515完成签到,获得积分20
9秒前
自觉松发布了新的文献求助10
10秒前
10秒前
大吉完成签到,获得积分10
10秒前
阔达紫青应助风清扬采纳,获得10
10秒前
雪落完成签到,获得积分10
11秒前
11秒前
雪白鸿涛完成签到,获得积分10
11秒前
DuMeng发布了新的文献求助30
11秒前
fjtao完成签到,获得积分20
12秒前
12秒前
平凡之路发布了新的文献求助10
12秒前
饱满雁菡完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4492519
求助须知:如何正确求助?哪些是违规求助? 3945903
关于积分的说明 12235828
捐赠科研通 3603141
什么是DOI,文献DOI怎么找? 1981637
邀请新用户注册赠送积分活动 1018424
科研通“疑难数据库(出版商)”最低求助积分说明 911135