亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi‐needle Localization with Attention U‐Net in US‐guided HDR Prostate Brachytherapy

近距离放射治疗 前列腺近距离放射治疗 深度学习 分割 计算机科学 人工智能 医学 超声波 医学物理学 计算机视觉 放射科 放射治疗
作者
Yupei Zhang,Yang Lei,Richard L. J. Qiu,Tonghe Wang,Hesheng Wang,Ashesh B. Jani,Walter J. Curran,Pretesh Patel,Tian Liu,Xiaofeng Yang
出处
期刊:Medical Physics [Wiley]
卷期号:47 (7): 2735-2745 被引量:43
标识
DOI:10.1002/mp.14128
摘要

Purpose Ultrasound (US)‐guided high dose rate (HDR) prostate brachytherapy requests the clinicians to place HDR needles (catheters) into the prostate gland under transrectal US (TRUS) guidance in the operating room. The quality of the subsequent radiation treatment plan is largely dictated by the needle placements, which varies upon the experience level of the clinicians and the procedure protocols. Real‐time plan dose distribution, if available, could be a vital tool to provide more subjective assessment of the needle placements, hence potentially improving the radiation plan quality and the treatment outcome. However, due to low signal‐to‐noise ratio (SNR) in US imaging, real‐time multi‐needle segmentation in 3D TRUS, which is the major obstacle for real‐time dose mapping, has not been realized to date. In this study, we propose a deep learning‐based method that enables accurate and real‐time digitization of the multiple needles in the 3D TRUS images of HDR prostate brachytherapy. Methods A deep learning model based on the U‐Net architecture was developed to segment multiple needles in the 3D TRUS images. Attention gates were considered in our model to improve the prediction on the small needle points. Furthermore, the spatial continuity of needles was encoded into our model with total variation (TV) regularization. The combined network was trained on 3D TRUS patches with the deep supervision strategy, where the binary needle annotation images were provided as ground truth. The trained network was then used to localize and segment the HDR needles for a new patient's TRUS images. We evaluated our proposed method based on the needle shaft and tip errors against manually defined ground truth and compared our method with other state‐of‐art methods (U‐Net and deeply supervised attention U‐Net). Results Our method detected 96% needles of 339 needles from 23 HDR prostate brachytherapy patients with 0.290 ± 0.236 mm at shaft error and 0.442 ± 0.831 mm at tip error. For shaft localization, our method resulted in 96% localizations with less than 0.8 mm error (needle diameter is 1.67 mm), while for tip localization, our method resulted in 75% needles with 0 mm error and 21% needles with 2 mm error (TRUS image slice thickness is 2 mm). No significant difference is observed ( P = 0.83) on tip localization between our results with the ground truth. Compared with U‐Net and deeply supervised attention U‐Net, the proposed method delivers a significant improvement on both shaft error and tip error ( P < 0.05). Conclusions We proposed a new segmentation method to precisely localize the tips and shafts of multiple needles in 3D TRUS images of HDR prostate brachytherapy. The 3D rendering of the needles could help clinicians to evaluate the needle placements. It paves the way for the development of real‐time plan dose assessment tools that can further elevate the quality and outcome of HDR prostate brachytherapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助科研通管家采纳,获得10
24秒前
31秒前
poki完成签到 ,获得积分10
35秒前
StonesKing发布了新的文献求助10
35秒前
StonesKing完成签到,获得积分10
52秒前
lixuebin完成签到 ,获得积分10
1分钟前
1分钟前
Hillson完成签到,获得积分10
1分钟前
半生完成签到 ,获得积分10
1分钟前
2分钟前
科研通AI5应助agent99采纳,获得30
2分钟前
称心铭完成签到 ,获得积分10
2分钟前
2分钟前
李剑鸿发布了新的文献求助30
2分钟前
不良帅完成签到,获得积分10
2分钟前
3分钟前
agent99发布了新的文献求助30
3分钟前
wanci应助Henry.g采纳,获得30
3分钟前
ZHANG完成签到 ,获得积分10
3分钟前
bkagyin应助Lee采纳,获得10
3分钟前
agent99完成签到,获得积分10
3分钟前
3分钟前
米米发布了新的文献求助30
4分钟前
斯文的难破完成签到 ,获得积分10
4分钟前
坚定龙猫完成签到,获得积分10
4分钟前
Lucas应助科研通管家采纳,获得10
4分钟前
紫熊完成签到,获得积分10
4分钟前
5分钟前
5分钟前
郭虎虎发布了新的文献求助10
5分钟前
害羞便当完成签到 ,获得积分10
5分钟前
郭虎虎完成签到,获得积分10
6分钟前
6分钟前
6分钟前
乐乐应助发发发发发采纳,获得10
6分钟前
joe完成签到 ,获得积分0
6分钟前
mwang完成签到,获得积分10
7分钟前
星际舟完成签到,获得积分10
7分钟前
萝卜猪完成签到,获得积分10
7分钟前
8分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3788272
求助须知:如何正确求助?哪些是违规求助? 3333714
关于积分的说明 10263200
捐赠科研通 3049588
什么是DOI,文献DOI怎么找? 1673634
邀请新用户注册赠送积分活动 802090
科研通“疑难数据库(出版商)”最低求助积分说明 760511