Weighted Transfer Learning for Improving Motor Imagery-Based Brain–Computer Interface

脑-机接口 计算机科学 分类器(UML) 学习迁移 运动表象 人工智能 模式识别(心理学) 线性分类器 特征向量 支持向量机 训练集 机器学习 脑电图 心理学 精神科
作者
Ahmed M. Azab,Lyudmila Mihaylova,Kai Keng Ang,Mahnaz Arvaneh
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:27 (7): 1352-1359 被引量:109
标识
DOI:10.1109/tnsre.2019.2923315
摘要

One of the major limitations of motor imagery (MI)-based brain-computer interface (BCI) is its long calibration time. Due to between sessions/subjects variations in the properties of brain signals, typically, a large amount of training data needs to be collected at the beginning of each session to calibrate the parameters of the BCI system for the target user. In this paper, we propose a novel transfer learning approach on the classification domain to reduce the calibration time without sacrificing the classification accuracy of MI-BCI. Thus, when only few subject-specific trials are available for training, the estimation of the classification parameters is improved by incorporating previously recorded data from other users. For this purpose, a regularization parameter is added to the objective function of the classifier to make the classification parameters as close as possible to the classification parameters of the previous users who have feature spaces similar to that of the target subject. In this paper, a new similarity measure based on the Kullback-Leibler divergence (KL) is used to measure the similarity between two feature spaces obtained using subject-specific common spatial patterns (CSP). The proposed transfer learning approach is applied on the logistic regression classifier and evaluated using three datasets. The results showed that compared with the subject-specific classifier, the proposed weighted transfer learning classifier improved the classification results, particularly when few subject-specific trials were available for training (p <; 0.05). Importantly, this improvement was more pronounced for users with medium and poor accuracy. Moreover, the statistical results showed that the proposed weighted transfer learning classifier performed significantly better than the considered comparable baseline algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aliu发布了新的文献求助10
刚刚
专注流沙发布了新的文献求助10
1秒前
si完成签到,获得积分10
2秒前
4秒前
5秒前
LJ完成签到,获得积分10
5秒前
爆米花应助专注流沙采纳,获得10
5秒前
mbxjsy发布了新的文献求助10
8秒前
8秒前
认真夜云发布了新的文献求助30
9秒前
10秒前
饿了呼啦啦完成签到 ,获得积分10
10秒前
12秒前
13秒前
shy发布了新的文献求助10
13秒前
一一应助nusiew采纳,获得10
13秒前
丑123发布了新的文献求助10
15秒前
16秒前
16秒前
Ice完成签到 ,获得积分10
16秒前
缓慢思枫发布了新的文献求助10
17秒前
19秒前
Lixuan完成签到 ,获得积分20
19秒前
英姑应助稳重的招牌采纳,获得10
19秒前
luyao970131发布了新的文献求助10
20秒前
小线团黑桃完成签到,获得积分10
20秒前
丘比特应助科研通管家采纳,获得10
20秒前
852应助科研通管家采纳,获得10
21秒前
华仔应助科研通管家采纳,获得10
21秒前
香蕉觅云应助科研通管家采纳,获得10
21秒前
王世缘发布了新的文献求助10
21秒前
共享精神应助科研通管家采纳,获得10
21秒前
21秒前
搜集达人应助科研通管家采纳,获得10
21秒前
科研通AI5应助科研通管家采纳,获得10
21秒前
科研通AI5应助科研通管家采纳,获得10
21秒前
研友_zndy9Z发布了新的文献求助10
22秒前
22秒前
25秒前
万能图书馆应助丑123采纳,获得10
26秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3802474
求助须知:如何正确求助?哪些是违规求助? 3348068
关于积分的说明 10336437
捐赠科研通 3064012
什么是DOI,文献DOI怎么找? 1682348
邀请新用户注册赠送积分活动 808078
科研通“疑难数据库(出版商)”最低求助积分说明 763997