Integration of a Raman spectroscopy system to a robotic-assisted surgical system for real-time tissue characterization during radical prostatectomy procedures

前列腺切除术 手术切缘 前列腺癌 医学 腹腔镜前列腺根治术 前列腺 拉曼光谱 泌尿科 生物医学工程 癌症 内科学 光学 物理
作者
Michael Pinto,Kevin C. Zorn,Jacques P. Tremblay,Joannie Desroches,F. Dallaire,Kelly Aubertin,Eric Marple,Christopher Kent,Frédéric Leblond,Dominique Trudel,Frédéric Lesage
出处
期刊:Journal of Biomedical Optics [SPIE]
卷期号:24 (02): 1-1 被引量:45
标识
DOI:10.1117/1.jbo.24.2.025001
摘要

Surgical excision of the whole prostate through a radical prostatectomy procedure is part of the standard of care for prostate cancer. Positive surgical margins (cancer cells having spread into surrounding nonresected tissue) occur in as many as 1 in 5 cases and strongly correlate with disease recurrence and the requirement of adjuvant treatment. Margin assessment is currently only performed by pathologists hours to days following surgery and the integration of a real-time surgical readout would benefit current prostatectomy procedures. Raman spectroscopy is a promising technology to assess surgical margins: its in vivo use during radical prostatectomy could help insure the extent of resected prostate and cancerous tissue is maximized. We thus present the design and development of a dual excitation Raman spectroscopy system (680- and 785-nm excitations) integrated to the robotic da Vinci surgical platform for in vivo use. Following validation in phantoms, spectroscopic data from 20 whole human prostates immediately following radical prostatectomy are obtained using the system. With this dataset, we are able to distinguish prostate from extra prostatic tissue with an accuracy, sensitivity, and specificity of 91%, 90.5%, and 96%, respectively. Finally, the integrated Raman spectroscopy system is used to collect preliminary spectroscopic data at the surgical margin in vivo in four patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ruiwing完成签到,获得积分10
刚刚
海纳百川完成签到,获得积分10
1秒前
故里发布了新的文献求助10
1秒前
1秒前
wu完成签到,获得积分20
1秒前
谦让靖儿发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
千里发布了新的文献求助10
2秒前
凌L发布了新的文献求助10
2秒前
星辰大海应助含糊的玲采纳,获得10
2秒前
汉堡包应助勤恳的跳跳糖采纳,获得10
3秒前
彭于晏应助纯真凌晴采纳,获得10
3秒前
隐形曼青应助枕雪听冷冷采纳,获得10
4秒前
Chance发布了新的文献求助10
4秒前
mulberry完成签到,获得积分10
4秒前
4秒前
现代的bb完成签到,获得积分10
5秒前
Csufters.完成签到,获得积分20
5秒前
恬恬完成签到,获得积分10
5秒前
今后应助岸边渔客采纳,获得10
5秒前
5秒前
天天快乐应助JOhn采纳,获得10
5秒前
dazhu发布了新的文献求助10
5秒前
5秒前
弥弥发布了新的文献求助10
6秒前
麒ww关注了科研通微信公众号
6秒前
6秒前
爱跳舞的拉丁完成签到,获得积分10
6秒前
7秒前
8秒前
时嗷完成签到,获得积分20
9秒前
9秒前
泡泡完成签到 ,获得积分10
9秒前
yh_milky完成签到,获得积分10
9秒前
9秒前
云想萧潇发布了新的文献求助10
10秒前
英俊的铭应助陈青灵采纳,获得10
10秒前
10秒前
凌L完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629869
求助须知:如何正确求助?哪些是违规求助? 4720921
关于积分的说明 14971132
捐赠科研通 4787826
什么是DOI,文献DOI怎么找? 2556570
邀请新用户注册赠送积分活动 1517709
关于科研通互助平台的介绍 1478285