Retinal Image Synthesis and Semi-Supervised Learning for Glaucoma Assessment

人工智能 计算机科学 青光眼 视盘 分类器(UML) 模式识别(心理学) 计算机视觉 眼科 医学
作者
Andrés Diaz-Pinto,Adrián Colomer,Valery Naranjo,Sandra Morales,Yanwu Xu,Alejandro F. Frangi
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:38 (9): 2211-2218 被引量:142
标识
DOI:10.1109/tmi.2019.2903434
摘要

Recent works show that generative adversarial networks (GANs) can be successfully applied to image synthesis and semi-supervised learning, where, given a small labeled database and a large unlabeled database, the goal is to train a powerful classifier. In this paper, we trained a retinal image synthesizer and a semi-supervised learning method for automatic glaucoma assessment using an adversarial model on a small glaucoma-labeled database and a large unlabeled database. Various studies have shown that glaucoma can be monitored by analyzing the optic disc and its surroundings, and for that reason, the images used in this paper were automatically cropped around the optic disc. The novelty of this paper is to propose a new retinal image synthesizer and a semi-supervised learning method for glaucoma assessment based on the deep convolutional GANs. In addition, and to the best of our knowledge, this system is trained on an unprecedented number of publicly available images (86926 images). This system, hence, is not only able to generate images synthetically but to provide labels automatically. Synthetic images were qualitatively evaluated using t-SNE plots of features associated with the images and their anatomical consistency was estimated by measuring the proportion of pixels corresponding to the anatomical structures around the optic disc. The resulting image synthesizer is able to generate realistic (cropped) retinal images, and subsequently, the glaucoma classifier is able to classify them into glaucomatous and normal with high accuracy (AUC = 0.9017). The obtained retinal image synthesizer and the glaucoma classifier could then be used to generate an unlimited number of cropped retinal images with glaucoma labels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助上善若水采纳,获得10
刚刚
冷酷代珊完成签到,获得积分10
刚刚
这瓜不卖发布了新的文献求助10
刚刚
易点点完成签到,获得积分10
3秒前
DJDJDDDJ完成签到,获得积分20
3秒前
3秒前
科研通AI5应助魏煜佳采纳,获得10
5秒前
7秒前
单薄茗发布了新的文献求助10
8秒前
9秒前
10秒前
彭于晏应助小草三心采纳,获得10
10秒前
小白发布了新的文献求助10
11秒前
11秒前
彭于晏应助冷傲千秋采纳,获得10
11秒前
研友_VZG7GZ应助蝶步韶华采纳,获得10
11秒前
11秒前
陈飞飞发布了新的文献求助10
13秒前
没有昵称发布了新的文献求助10
14秒前
16秒前
dyn发布了新的文献求助10
17秒前
syalonyui发布了新的文献求助10
18秒前
隐形曼青应助芫芫采纳,获得10
18秒前
19秒前
19秒前
小白完成签到,获得积分10
21秒前
犬狗狗完成签到 ,获得积分10
21秒前
一一应助桃李春风一杯酒采纳,获得10
22秒前
23秒前
酷波er应助racill采纳,获得10
23秒前
魏煜佳发布了新的文献求助10
24秒前
没有昵称完成签到,获得积分10
24秒前
陈子旋发布了新的文献求助20
26秒前
遇见发布了新的文献求助10
28秒前
蝶步韶华发布了新的文献求助10
28秒前
瑞思摆发布了新的文献求助10
28秒前
29秒前
30秒前
Ma完成签到,获得积分10
31秒前
科研通AI5应助科研通管家采纳,获得10
33秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
非光滑分析与控制理论 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Effect of clapping movement with groove rhythm on executive function: focusing on audiomotor entrainment 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3826664
求助须知:如何正确求助?哪些是违规求助? 3368977
关于积分的说明 10453373
捐赠科研通 3088541
什么是DOI,文献DOI怎么找? 1699175
邀请新用户注册赠送积分活动 817281
科研通“疑难数据库(出版商)”最低求助积分说明 770148