Quantizing deep convolutional networks for efficient inference: A whitepaper

量化(信号处理) 计算机科学 浮点型 卷积神经网络 加速 推论 算法 SIMD公司 计算机工程 深度学习 并行计算
作者
Raghuraman Krishnamoorthi
出处
期刊:arXiv: Learning 被引量:213
摘要

We present an overview of techniques for quantizing convolutional neural networks for inference with integer weights and activations. Per-channel quantization of weights and per-layer quantization of activations to 8-bits of precision post-training produces classification accuracies within 2% of floating point networks for a wide variety of CNN architectures. Model sizes can be reduced by a factor of 4 by quantizing weights to 8-bits, even when 8-bit arithmetic is not supported. This can be achieved with simple, post training quantization of weights.We benchmark latencies of quantized networks on CPUs and DSPs and observe a speedup of 2x-3x for quantized implementations compared to floating point on CPUs. Speedups of up to 10x are observed on specialized processors with fixed point SIMD capabilities, like the Qualcomm QDSPs with HVX. Quantization-aware training can provide further improvements, reducing the gap to floating point to 1% at 8-bit precision. Quantization-aware training also allows for reducing the precision of weights to four bits with accuracy losses ranging from 2% to 10%, with higher accuracy drop for smaller networks.We introduce tools in TensorFlow and TensorFlowLite for quantizing convolutional networks and review best practices for quantization-aware training to obtain high accuracy with quantized weights and activations. We recommend that per-channel quantization of weights and per-layer quantization of activations be the preferred quantization scheme for hardware acceleration and kernel optimization. We also propose that future processors and hardware accelerators for optimized inference support precisions of 4, 8 and 16 bits.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
碧蓝之柔发布了新的文献求助10
1秒前
赘婿应助烟酒僧采纳,获得10
1秒前
科研通AI6应助XIAOATAIA采纳,获得10
2秒前
派大星完成签到,获得积分10
2秒前
F_u完成签到,获得积分10
3秒前
孤标傲世完成签到 ,获得积分10
3秒前
4秒前
如约发布了新的文献求助10
4秒前
4秒前
4秒前
大模型应助你讲咩采纳,获得10
4秒前
5秒前
5秒前
5秒前
量子星尘发布了新的文献求助10
7秒前
咸咸的风发布了新的文献求助10
7秒前
烦烦烦发布了新的文献求助10
7秒前
七街完成签到 ,获得积分10
8秒前
大个应助万万不可能采纳,获得20
8秒前
9秒前
科目三应助ws采纳,获得10
9秒前
研友_VZG7GZ应助sunny采纳,获得10
10秒前
派大赐完成签到,获得积分10
10秒前
奋斗秋完成签到,获得积分10
11秒前
hxy完成签到 ,获得积分10
11秒前
11秒前
烟花应助zhangenbo采纳,获得10
12秒前
传奇3应助wt采纳,获得10
12秒前
12秒前
今后应助99采纳,获得10
13秒前
14秒前
14秒前
小二郎应助薛定谔的猫采纳,获得10
14秒前
15秒前
Zyj发布了新的文献求助10
15秒前
阿里沙完成签到,获得积分10
15秒前
Orange应助桃花源的瓶起子采纳,获得10
16秒前
科研通AI6应助yx阿聪采纳,获得10
16秒前
清城完成签到,获得积分10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5546683
求助须知:如何正确求助?哪些是违规求助? 4632489
关于积分的说明 14627325
捐赠科研通 4574069
什么是DOI,文献DOI怎么找? 2508092
邀请新用户注册赠送积分活动 1484663
关于科研通互助平台的介绍 1455826