Compressive strength of geopolymer concrete modified with nano-silica: Experimental and modeling investigations

固化(化学) 抗压强度 材料科学 聚合物 人工神经网络 复合材料 水泥 地聚合物水泥 线性回归 计算机科学 机器学习
作者
Hemn Unis Ahmed,Ahmed Salih Mohammed,Rabar H. Faraj,Shaker Qaidi,Azad A. Mohammed
出处
期刊:Case Studies in Construction Materials [Elsevier BV]
卷期号:16: e01036-e01036 被引量:169
标识
DOI:10.1016/j.cscm.2022.e01036
摘要

Since nanotechnology can enhance the performance of materials, significant effort has been expended in recent years to incorporate nanoparticles (NPs) into geopolymer concrete (GPC) to improve performance and produce GPC with improved characteristics. Recent efforts have been made to incorporate various nanomaterials, most notably nano-silica (nS), into GPC to improve the composite's properties. Compressive strength (CS) is an important property of all concrete composites, including geopolymer concrete. Several mix proportion parameters and curing temperature and ages influence the CS of geopolymer concrete. As a result, developing a credible model for forecasting concrete CS is critical for saving time, energy, and money while also providing guidance for scheduling the construction process and removing formworks. This paper consists of three phases; in the first phase, a detailed review on the effect of adding nS on the CS of GPC was provided; then, in the second phase, a large amount of mixed design data were extracted from literature studies to create five different models including artificial neural network, M5P-tree, linear regression, nonlinear regression, and multi logistic regression models for forecasting the CS of GPC incorporated nS. Finally, the developed models were validated in the last phase by carrying out experimental laboratory works. Results revealed that the addition of nS improves the CS of GPC, and the ANN model estimated the CS of GPC incorporated nS more accurately than the other models. On the other hand, the alkaline solution to binder ratio, molarity, NaOH content, curing temperature, and ages were those parameters that significantly influenced the CS of GPC incorporated nS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
小番茄完成签到,获得积分10
刚刚
fool完成签到,获得积分10
刚刚
liyuheng20完成签到,获得积分10
刚刚
江脸脸完成签到,获得积分10
1秒前
马里奥完成签到,获得积分10
1秒前
sunshine应助高玉采纳,获得10
1秒前
Promise发布了新的文献求助10
1秒前
程smile笑完成签到,获得积分10
1秒前
maorongfu456完成签到,获得积分10
1秒前
行稳致远完成签到,获得积分10
2秒前
糖糖糖唐完成签到,获得积分10
3秒前
gg发布了新的文献求助10
4秒前
4秒前
4秒前
费老三发布了新的文献求助10
5秒前
行稳致远发布了新的文献求助10
5秒前
6秒前
7秒前
夜未央完成签到,获得积分10
7秒前
ZJPPPP完成签到,获得积分10
7秒前
渤海少年发布了新的文献求助10
7秒前
lei.qin完成签到 ,获得积分10
8秒前
8秒前
豪厉害完成签到,获得积分10
8秒前
科研通AI2S应助Altmimi采纳,获得10
8秒前
9秒前
善学以致用应助sss采纳,获得10
10秒前
谢谢完成签到,获得积分10
10秒前
www完成签到 ,获得积分10
11秒前
张哈完成签到 ,获得积分10
12秒前
头发很多发布了新的文献求助30
12秒前
W123发布了新的文献求助50
12秒前
12秒前
科研通AI5应助白榆采纳,获得10
12秒前
虚幻小丸子完成签到 ,获得积分10
13秒前
13秒前
gg完成签到,获得积分10
13秒前
淋湿巴黎发布了新的文献求助10
13秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795743
求助须知:如何正确求助?哪些是违规求助? 3340790
关于积分的说明 10301851
捐赠科研通 3057307
什么是DOI,文献DOI怎么找? 1677625
邀请新用户注册赠送积分活动 805512
科研通“疑难数据库(出版商)”最低求助积分说明 762642