Evaluation of 1D and 2D Deep Convolutional Neural Networks for Driving Event Recognition

惯性测量装置 卷积神经网络 计算机科学 人工智能 事件(粒子物理) 特征提取 特征(语言学) 加速度 人工神经网络 模式识别(心理学) 深度学习 机器学习 物理 哲学 经典力学 量子力学 语言学
作者
Álvaro Teixeira. Escottá,Wesley Beccaro,Miguel Arjona Ramírez
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:22 (11): 4226-4226 被引量:13
标识
DOI:10.3390/s22114226
摘要

Driving event detection and driver behavior recognition have been widely explored for many purposes, including detecting distractions, classifying driver actions, detecting kidnappings, pricing vehicle insurance, evaluating eco-driving, and managing shared and leased vehicles. Some systems can recognize the main driving events (e.g., accelerating, braking, and turning) by using in-vehicle devices, such as inertial measurement unit (IMU) sensors. In general, feature extraction is a commonly used technique to obtain robust and meaningful information from the sensor signals to guarantee the effectiveness of the subsequent classification algorithm. However, a general assessment of deep neural networks merits further investigation, particularly regarding end-to-end models based on Convolutional Neural Networks (CNNs), which combine two components, namely feature extraction and the classification parts. This paper primarily explores supervised deep-learning models based on 1D and 2D CNNs to classify driving events from the signals of linear acceleration and angular velocity obtained with the IMU sensors of a smartphone placed in the instrument panel of the vehicle. Aggressive and non-aggressive behaviors can be recognized by monitoring driving events, such as accelerating, braking, lane changing, and turning. The experimental results obtained are promising since the best classification model achieved accuracy values of up to 82.40%, and macro- and micro-average F1 scores, respectively, equal to 75.36% and 82.40%, thus, demonstrating high performance in the classification of driving events.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
霸气的保温杯完成签到 ,获得积分10
3秒前
希望天下0贩的0应助ling_lz采纳,获得10
3秒前
大内书包发布了新的文献求助10
3秒前
4秒前
静谧180完成签到,获得积分10
6秒前
海拾月发布了新的文献求助10
8秒前
hsialy发布了新的文献求助10
9秒前
爆米花应助coconut采纳,获得10
10秒前
10秒前
11秒前
科研通AI2S应助一与采纳,获得10
11秒前
11秒前
3MB完成签到 ,获得积分10
12秒前
欣喜的绝山完成签到,获得积分10
13秒前
可靠从云完成签到 ,获得积分10
14秒前
16秒前
yaooo完成签到 ,获得积分10
17秒前
活力寄凡发布了新的文献求助10
17秒前
炙热的人生完成签到,获得积分20
19秒前
哟哟哟完成签到,获得积分10
20秒前
深情安青应助毛毛采纳,获得10
20秒前
科研通AI2S应助王曼曼采纳,获得10
21秒前
parpate发布了新的文献求助10
21秒前
ba完成签到,获得积分10
21秒前
活力寄凡完成签到,获得积分10
26秒前
小高加油完成签到,获得积分10
27秒前
parpate完成签到,获得积分20
28秒前
何时财富自由完成签到,获得积分10
29秒前
晨心完成签到,获得积分10
29秒前
30秒前
收手吧大哥应助静谧180采纳,获得50
30秒前
焜少发布了新的文献求助10
33秒前
祝遥完成签到,获得积分0
34秒前
落寞溪灵完成签到 ,获得积分10
34秒前
36秒前
36秒前
雷家完成签到,获得积分10
37秒前
莫里完成签到,获得积分10
38秒前
38秒前
39秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843681
求助须知:如何正确求助?哪些是违规求助? 3385989
关于积分的说明 10543401
捐赠科研通 3106790
什么是DOI,文献DOI怎么找? 1711162
邀请新用户注册赠送积分活动 823937
科研通“疑难数据库(出版商)”最低求助积分说明 774390