纤维束成像
磁共振弥散成像
人类连接体项目
白质
神经科学
人脑
神经影像学
计算机科学
部分各向异性
体素
人工智能
丘脑
作者
Fan Zhang,Alessandro Daducci,Yong He,Simona Schiavi,Caio Seguin,Robert Smith,Chun-Hung Yeh,Tengda Zhao,Lauren J. O’Donnell
出处
期刊:NeuroImage
[Elsevier BV]
日期:2022-01-01
卷期号:: 118870-118870
被引量:2
标识
DOI:10.1016/j.neuroimage.2021.118870
摘要
• A high-level overview of how tractography is used to enable quantitative analysis of the brains structural connectivity • Review methodology involved for tractography correction, segmentation and quantification • Review studies using quantitative tractography approaches to study the brains white matter in health and disease Diffusion magnetic resonance imaging (dMRI) tractography is an advanced imaging technique that enables in vivo reconstruction of the brain’s white matter connections at macro scale. It provides an important tool for quantitative mapping of the brain’s structural connectivity using measures of connectivity or tissue microstructure. Over the last two decades, the study of brain connectivity using dMRI tractography has played a prominent role in the neuroimaging research landscape. In this paper, we provide a high-level overview of how tractography is used to enable quantitative analysis of the brain’s structural connectivity in health and disease. We focus on two types of quantitative analyses of tractography, including: 1) tract-specific analysis that refers to research that is typically hypothesis-driven and studies particular anatomical fiber tracts, and 2) connectome-based analysis that refers to research that is more data-driven and generally studies the structural connectivity of the entire brain. We first provide a review of methodology involved in three main processing steps that are common across most approaches for quantitative analysis of tractography, including methods for tractography correction, segmentation and quantification . For each step, we aim to describe methodological choices, their popularity, and potential pros and cons. We then review studies that have used quantitative tractography approaches to study the brain’s white matter, focusing on applications in neurodevelopment, aging, neurological disorders, mental disorders, and neurosurgery. We conclude that, while there have been considerable advancements in methodological technologies and breadth of applications, there nevertheless remains no consensus about the “best” methodology in quantitative analysis of tractography, and researchers should remain cautious when interpreting results in research and clinical applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI