The Trend-Fuzzy-Granulation-Based Adaptive Fuzzy Cognitive Map for Long-Term Time Series Forecasting

模糊逻辑 计算机科学 模糊认知图 时间序列 系列(地层学) 期限(时间) 人工智能 数据挖掘 机器学习 自适应神经模糊推理系统 模糊控制系统 数学 量子力学 生物 物理 古生物学
作者
Yihan Wang,Fusheng Yu,Władysław Homenda,Witold Pedrycz,Yuqing Tang,Agnieszka Jastrzębska,Fang Li
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:30 (12): 5166-5180 被引量:50
标识
DOI:10.1109/tfuzz.2022.3169624
摘要

One drawback of using the existing one-step forecasting models for long-term time series prediction is the cumulative errors caused by iterations. In order to overcome this shortcoming, this article proposes a trend-fuzzy-granulation-based adaptive fuzzy cognitive map (FCM) for long-term time series forecasting. Different from the original FCM-based forecasting models, a class of trend fuzzy information granules is built to represent the trend, fluctuation range, and trend persistence of various segments of time series, which are more instrumental and comprehensive than simple magnitude information. Thus, the proposed forecasting model is a granular model according to the form of its inputs and outputs. In an original FCM-based forecasting model, the causal relationships among concepts remain unchanged throughout the training of the whole dataset, however, in reality, the causal relationships may change with the state of concepts. Therefore, it is unreasonable to use the invariable causal relationships which often result in poor predictions. In view of this, we construct an adaptive FCM where different causal relationships are built to forecast concepts of different states. This is the first time to forecast trend fuzzy information granules using an adaptive FCM. Compared with the existing classical forecasting models, the proposed forecasting model achieves superior performance which is verified through a series of experimental studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
Hello应助欢呼的世平采纳,获得10
1秒前
犹豫的铅笔完成签到,获得积分10
1秒前
tiankong发布了新的文献求助10
1秒前
查百到完成签到 ,获得积分10
1秒前
小杭76应助123采纳,获得10
1秒前
tanzzz发布了新的文献求助30
1秒前
不想做实验完成签到,获得积分10
1秒前
Van完成签到,获得积分10
2秒前
XX完成签到,获得积分20
2秒前
Owen应助lili采纳,获得10
2秒前
夙与完成签到,获得积分10
2秒前
大雪封山完成签到,获得积分10
2秒前
PPP应助Donson_Li采纳,获得10
3秒前
小竹完成签到 ,获得积分10
3秒前
谨慎初曼发布了新的文献求助10
3秒前
胡雅雯发布了新的文献求助50
4秒前
大山发布了新的文献求助10
4秒前
4秒前
爬不起来发布了新的文献求助10
5秒前
fff应助ller采纳,获得10
5秒前
Yu发布了新的文献求助10
5秒前
慕雪完成签到,获得积分10
5秒前
5秒前
6秒前
Jasper应助DAdump1ing采纳,获得10
6秒前
顾矜应助陈乔乔采纳,获得10
6秒前
xss完成签到,获得积分10
6秒前
无名完成签到,获得积分10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
6秒前
浮游应助科研通管家采纳,获得10
7秒前
所所应助科研通管家采纳,获得10
7秒前
852应助科研通管家采纳,获得10
7秒前
传奇3应助科研通管家采纳,获得10
7秒前
zcl应助科研通管家采纳,获得80
7秒前
搜集达人应助科研通管家采纳,获得10
7秒前
JPH1990应助zxy采纳,获得10
7秒前
donnolea发布了新的文献求助10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5257834
求助须知:如何正确求助?哪些是违规求助? 4419879
关于积分的说明 13758101
捐赠科研通 4293370
什么是DOI,文献DOI怎么找? 2355867
邀请新用户注册赠送积分活动 1352349
关于科研通互助平台的介绍 1313086