Multi-Centre, Multi-Vendor and Multi-Disease Cardiac Segmentation: The M&Ms Challenge

概化理论 标杆管理 分割 计算机科学 深度学习 小贩 人工智能 扫描仪 领域(数学) 心脏成像 图像分割 数据科学 机器学习 医学物理学 数据挖掘 医学 放射科 业务 统计 数学 营销 纯数学
作者
Víctor M. Campello,Polyxeni Gkontra,Cristian Izquierdo,Carlos Martín-Isla,Alireza Sojoudi,Peter M. Full,Klaus Maier‐Hein,Yao Zhang,Zhiqiang He,Jun Ma,Mario Parreño,Alberto Albiol,Fanwei Kong,Shawn C. Shadden,Jorge Corral Acero,Vaanathi Sundaresan,Mina Saber,Mustafa Elattar,Hongwei Li,Bjoern Menze
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:40 (12): 3543-3554 被引量:77
标识
DOI:10.1109/tmi.2021.3090082
摘要

The emergence of deep learning has considerably advanced the state-of-the-art in cardiac magnetic resonance (CMR) segmentation. Many techniques have been proposed over the last few years, bringing the accuracy of automated segmentation close to human performance. However, these models have been all too often trained and validated using cardiac imaging samples from single clinical centres or homogeneous imaging protocols. This has prevented the development and validation of models that are generalizable across different clinical centres, imaging conditions or scanner vendors. To promote further research and scientific benchmarking in the field of generalizable deep learning for cardiac segmentation, this paper presents the results of the Multi-Centre, Multi-Vendor and Multi-Disease Cardiac Segmentation (M&Ms) Challenge, which was recently organized as part of the MICCAI 2020 Conference. A total of 14 teams submitted different solutions to the problem, combining various baseline models, data augmentation strategies, and domain adaptation techniques. The obtained results indicate the importance of intensity-driven data augmentation, as well as the need for further research to improve generalizability towards unseen scanner vendors or new imaging protocols. Furthermore, we present a new resource of 375 heterogeneous CMR datasets acquired by using four different scanner vendors in six hospitals and three different countries (Spain, Canada and Germany), which we provide as open-access for the community to enable future research in the field.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
知了完成签到 ,获得积分10
刚刚
刚刚
专注的水壶完成签到 ,获得积分10
刚刚
刚刚
科研通AI2S应助bunny采纳,获得10
1秒前
swjs08完成签到,获得积分10
2秒前
2秒前
2秒前
顺鑫完成签到 ,获得积分10
2秒前
Vanilla完成签到,获得积分10
3秒前
蓝胖子完成签到 ,获得积分10
3秒前
子非鱼完成签到,获得积分10
4秒前
hjyylab应助科研通管家采纳,获得10
4秒前
dong应助科研通管家采纳,获得10
4秒前
华仔应助科研通管家采纳,获得10
4秒前
Lucas应助科研通管家采纳,获得20
5秒前
科研通AI2S应助殷子安采纳,获得10
5秒前
Lucas应助科研通管家采纳,获得10
5秒前
Lucas应助科研通管家采纳,获得10
5秒前
5秒前
Lucas应助科研通管家采纳,获得10
5秒前
Lucas应助科研通管家采纳,获得10
5秒前
Lucas应助科研通管家采纳,获得10
5秒前
5秒前
Lucas应助科研通管家采纳,获得10
5秒前
hjyylab应助科研通管家采纳,获得10
5秒前
5秒前
DijiaXu应助科研通管家采纳,获得10
5秒前
无限达完成签到,获得积分10
5秒前
Hello应助科研通管家采纳,获得10
5秒前
hjyylab应助科研通管家采纳,获得10
5秒前
田様应助科研通管家采纳,获得10
5秒前
hjyylab应助科研通管家采纳,获得10
5秒前
5秒前
limz发布了新的文献求助10
7秒前
8秒前
淳于白凝完成签到,获得积分10
8秒前
牧绯发布了新的文献求助10
9秒前
fang应助Honcy采纳,获得10
10秒前
10秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
徐淮辽南地区新元古代叠层石及生物地层 2000
A new approach to the extrapolation of accelerated life test data 1000
Global Eyelash Assessment scale (GEA) 500
School Psychology 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4030480
求助须知:如何正确求助?哪些是违规求助? 3569183
关于积分的说明 11356923
捐赠科研通 3299799
什么是DOI,文献DOI怎么找? 1816891
邀请新用户注册赠送积分活动 890975
科研通“疑难数据库(出版商)”最低求助积分说明 813983