Heterogeneous multi-scale neighbor topologies enhanced drug–disease association prediction

计算机科学 编码 网络拓扑 成对比较 异构网络 节点(物理) 图形 代表(政治) 人工智能 联想(心理学) 机器学习 拓扑(电路) 数据挖掘 理论计算机科学 数学 生物 计算机网络 组合数学 工程类 认识论 哲学 无线网络 基因 政治 电信 结构工程 法学 生物化学 无线 政治学
作者
Ping Xuan,Meng Xiangfeng,Ling Gao,Tiangang Zhang,Toshiya Nakaguchi
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (3) 被引量:2
标识
DOI:10.1093/bib/bbac123
摘要

Abstract Motivation Identifying new uses of approved drugs is an effective way to reduce the time and cost of drug development. Recent computational approaches for predicting drug–disease associations have integrated multi-sourced data on drugs and diseases. However, neighboring topologies of various scales in multiple heterogeneous drug–disease networks have yet to be exploited and fully integrated. Results We propose a novel method for drug–disease association prediction, called MGPred, used to encode and learn multi-scale neighboring topologies of drug and disease nodes and pairwise attributes from heterogeneous networks. First, we constructed three heterogeneous networks based on multiple kinds of drug similarities. Each network comprises drug and disease nodes and edges created based on node-wise similarities and associations that reflect specific topological structures. We also propose an embedding mechanism to formulate topologies that cover different ranges of neighbors. To encode the embeddings and derive multi-scale neighboring topology representations of drug and disease nodes, we propose a module based on graph convolutional autoencoders with shared parameters for each heterogeneous network. We also propose scale-level attention to obtain an adaptive fusion of informative topological representations at different scales. Finally, a learning module based on a convolutional neural network with various receptive fields is proposed to learn multi-view attribute representations of a pair of drug and disease nodes. Comprehensive experiment results demonstrate that MGPred outperforms other state-of-the-art methods in comparison to drug-related disease prediction, and the recall rates for the top-ranked candidates and case studies on five drugs further demonstrate the ability of MGPred to retrieve potential drug–disease associations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zl12345完成签到,获得积分10
刚刚
科目三应助鲜艳的青丝采纳,获得10
刚刚
1秒前
阔达映之发布了新的文献求助20
2秒前
Owen应助SphenoidLi采纳,获得10
2秒前
DMA50发布了新的文献求助10
6秒前
7秒前
Orange应助sdniuidifod采纳,获得10
10秒前
缥缈的晓瑶完成签到 ,获得积分10
12秒前
KK发布了新的文献求助10
14秒前
14秒前
16秒前
追寻清完成签到,获得积分10
17秒前
17秒前
壮观以松发布了新的文献求助10
18秒前
19秒前
旷野发布了新的文献求助10
20秒前
24秒前
PetrichorF完成签到 ,获得积分10
26秒前
小m完成签到 ,获得积分10
26秒前
26秒前
27秒前
banana完成签到,获得积分10
28秒前
零立方完成签到 ,获得积分10
30秒前
淡定的月半应助旷野采纳,获得10
31秒前
科研通AI2S应助banana采纳,获得10
32秒前
wanci应助小综的fan儿采纳,获得10
33秒前
善良的梦槐完成签到,获得积分10
34秒前
深情安青应助壮观以松采纳,获得10
36秒前
星驰完成签到 ,获得积分10
38秒前
39秒前
完美世界应助积极的绫采纳,获得10
39秒前
WYN完成签到 ,获得积分10
40秒前
科研通AI5应助yy采纳,获得10
40秒前
yan关闭了yan文献求助
40秒前
年轻的吐司完成签到,获得积分10
41秒前
43秒前
44秒前
小杨爱吃羊完成签到 ,获得积分10
46秒前
48秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
System of systems: When services and products become indistinguishable 300
How to carry out the process of manufacturing servitization: A case study of the red collar group 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3812565
求助须知:如何正确求助?哪些是违规求助? 3357082
关于积分的说明 10385222
捐赠科研通 3074312
什么是DOI,文献DOI怎么找? 1688689
邀请新用户注册赠送积分活动 812320
科研通“疑难数据库(出版商)”最低求助积分说明 766986