A Preventive Model for Muscle Injuries

接收机工作特性 医学 物理医学与康复 运动员 物理疗法 机器学习 计算机科学
作者
Alejandro López‐Valenciano,Francisco Ayala,José M. Puerta,Mark B.A. De Ste Croix,Francisco J. Vera-García,Sergio Hernández-Sánchez,Iñaki Ruiz‐Pérez,Gregory D. Myer
出处
期刊:Medicine and Science in Sports and Exercise [Ovid Technologies (Wolters Kluwer)]
卷期号:50 (5): 915-927 被引量:94
标识
DOI:10.1249/mss.0000000000001535
摘要

The application of contemporary statistical approaches coming from Machine Learning and Data Mining environments to build more robust predictive models to identify athletes at high risk for injury might support injury prevention strategies of the future.The purpose was to analyze and compare the behavior of numerous machine learning methods to select the best-performing injury risk factor model to identify athlete at risk for lower extremity muscle injuries (MUSINJ).A total of 132 male professional soccer and handball players underwent a preseason screening evaluation that included personal, psychological, and neuromuscular measures. Furthermore, injury surveillance was used to capture all the MUSINJ occurring in the 2013/2014 seasons. The predictive ability of several models built by applying a range of learning techniques were analyzed and compared.There were 32 MUSINJ over the follow-up period, 21 (65.6%) of which corresponded to the hamstrings, 3 to the quadriceps (9.3%), 4 to the adductors (12.5%), and 4 to the triceps surae (12.5%). A total of 13 injures occurred during training and 19 during competition. Three players were injured twice during the observation period so the first injury was used, leaving 29 MUSINJ that were used to develop the predictive models. The model generated by the SmooteBoost technique with a cost-sensitive ADTree as the base classifier reported the best evaluation criteria (area under the receiver operating characteristic curve score, 0.747; true positive rate, 65.9%; true negative rate, 79.1) and hence was considered the best for predicting MUSINJ.The prediction model showed moderate accuracy for identifying professional soccer and handball players at risk for MUSINJ. Therefore, the model developed might help in the decision-making process for injury prevention.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助dd采纳,获得10
1秒前
11111发布了新的文献求助10
1秒前
林搞搞完成签到,获得积分10
1秒前
2秒前
Mcarry发布了新的文献求助20
2秒前
2秒前
liusong发布了新的文献求助10
5秒前
轻松凌柏完成签到 ,获得积分10
6秒前
yating发布了新的文献求助10
6秒前
大老黑发布了新的文献求助10
8秒前
9秒前
liusong完成签到,获得积分10
10秒前
七七完成签到,获得积分10
12秒前
12秒前
Nowind完成签到,获得积分10
13秒前
14秒前
16秒前
16秒前
16秒前
Baccano发布了新的文献求助10
17秒前
研友_8WMY7n完成签到 ,获得积分10
18秒前
大老黑完成签到,获得积分10
18秒前
19秒前
dd发布了新的文献求助10
20秒前
乐乐应助清新的幼旋采纳,获得10
20秒前
20秒前
小二郎应助violet采纳,获得10
21秒前
24秒前
cadet发布了新的文献求助10
24秒前
24秒前
Pastime发布了新的文献求助10
24秒前
量子星尘发布了新的文献求助10
25秒前
zh完成签到,获得积分10
26秒前
dd完成签到,获得积分20
26秒前
Jasper应助唐展通采纳,获得10
27秒前
29秒前
橙子完成签到,获得积分10
30秒前
30秒前
轻松凌柏发布了新的文献求助10
31秒前
pancake发布了新的文献求助80
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5741889
求助须知:如何正确求助?哪些是违规求助? 5404554
关于积分的说明 15343509
捐赠科研通 4883431
什么是DOI,文献DOI怎么找? 2625018
邀请新用户注册赠送积分活动 1573876
关于科研通互助平台的介绍 1530812