EEG Emotion Recognition Using Dynamical Graph Convolutional Neural Networks

判别式 人工智能 计算机科学 卷积神经网络 特征提取 脑电图 模式识别(心理学) 情绪识别 邻接矩阵 图形 语音识别 心理学 理论计算机科学 精神科
作者
Tengfei Song,Wenming Zheng,Peng Song,Zhen Cui
出处
期刊:IEEE Transactions on Affective Computing [Institute of Electrical and Electronics Engineers]
卷期号:11 (3): 532-541 被引量:1043
标识
DOI:10.1109/taffc.2018.2817622
摘要

In this paper, a multichannel EEG emotion recognition method based on a novel dynamical graph convolutional neural networks (DGCNN) is proposed. The basic idea of the proposed EEG emotion recognition method is to use a graph to model the multichannel EEG features and then perform EEG emotion classification based on this model. Different from the traditional graph convolutional neural networks (GCNN) methods, the proposed DGCNN method can dynamically learn the intrinsic relationship between different electroencephalogram (EEG) channels, represented by an adjacency matrix, via training a neural network so as to benefit for more discriminative EEG feature extraction. Then, the learned adjacency matrix is used to learn more discriminative features for improving the EEG emotion recognition. We conduct extensive experiments on the SJTU emotion EEG dataset (SEED) and DREAMER dataset. The experimental results demonstrate that the proposed method achieves better recognition performance than the state-of-the-art methods, in which the average recognition accuracy of 90.4 percent is achieved for subject dependent experiment while 79.95 percent for subject independent cross-validation one on the SEED database, and the average accuracies of 86.23, 84.54 and 85.02 percent are respectively obtained for valence, arousal and dominance classifications on the DREAMER database.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ACX完成签到,获得积分10
1秒前
1秒前
CipherSage应助daidai采纳,获得10
2秒前
2秒前
2秒前
2秒前
缓慢豁发布了新的文献求助10
3秒前
所所应助sdl采纳,获得10
4秒前
pxx完成签到,获得积分10
4秒前
4秒前
研友_Z1xNWn发布了新的文献求助10
8秒前
8秒前
lyf发布了新的文献求助10
8秒前
9秒前
RenS完成签到,获得积分10
9秒前
Dinglin发布了新的文献求助10
9秒前
嗯嗯嗯嗯完成签到,获得积分10
10秒前
阿清应助ISLAND采纳,获得10
12秒前
上官若男应助崔斯坦采纳,获得10
13秒前
华仔应助夏冰采纳,获得10
14秒前
无辜的豌豆完成签到 ,获得积分10
15秒前
daidai发布了新的文献求助10
15秒前
Orange应助收声采纳,获得10
15秒前
YE发布了新的文献求助10
16秒前
领导范儿应助粗犷的咖啡采纳,获得10
16秒前
16秒前
时尚的傲旋完成签到 ,获得积分10
17秒前
17秒前
zhuzhen007完成签到 ,获得积分10
17秒前
Dinglin完成签到,获得积分10
17秒前
17秒前
17秒前
18秒前
18秒前
深情安青应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
pcr163应助科研通管家采纳,获得20
18秒前
pcr163应助科研通管家采纳,获得40
18秒前
小马甲应助shhdbxbdb采纳,获得10
19秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1055
Plutonium Handbook 1000
Three plays : drama 1000
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
Cochrane Handbook for Systematic Reviews ofInterventions(current version) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4101204
求助须知:如何正确求助?哪些是违规求助? 3639088
关于积分的说明 11531760
捐赠科研通 3347729
什么是DOI,文献DOI怎么找? 1839810
邀请新用户注册赠送积分活动 907003
科研通“疑难数据库(出版商)”最低求助积分说明 824163