EEG Emotion Recognition Using Dynamical Graph Convolutional Neural Networks

判别式 人工智能 计算机科学 卷积神经网络 特征提取 脑电图 模式识别(心理学) 情绪识别 邻接矩阵 图形 语音识别 心理学 理论计算机科学 精神科
作者
Tengfei Song,Wenming Zheng,Peng Song,Zhen Cui
出处
期刊:IEEE Transactions on Affective Computing [Institute of Electrical and Electronics Engineers]
卷期号:11 (3): 532-541 被引量:1083
标识
DOI:10.1109/taffc.2018.2817622
摘要

In this paper, a multichannel EEG emotion recognition method based on a novel dynamical graph convolutional neural networks (DGCNN) is proposed. The basic idea of the proposed EEG emotion recognition method is to use a graph to model the multichannel EEG features and then perform EEG emotion classification based on this model. Different from the traditional graph convolutional neural networks (GCNN) methods, the proposed DGCNN method can dynamically learn the intrinsic relationship between different electroencephalogram (EEG) channels, represented by an adjacency matrix, via training a neural network so as to benefit for more discriminative EEG feature extraction. Then, the learned adjacency matrix is used to learn more discriminative features for improving the EEG emotion recognition. We conduct extensive experiments on the SJTU emotion EEG dataset (SEED) and DREAMER dataset. The experimental results demonstrate that the proposed method achieves better recognition performance than the state-of-the-art methods, in which the average recognition accuracy of 90.4 percent is achieved for subject dependent experiment while 79.95 percent for subject independent cross-validation one on the SEED database, and the average accuracies of 86.23, 84.54 and 85.02 percent are respectively obtained for valence, arousal and dominance classifications on the DREAMER database.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
CodeCraft应助Alvin采纳,获得10
2秒前
英吉利25发布了新的文献求助10
2秒前
蜗牛完成签到,获得积分10
2秒前
伶俐映真发布了新的文献求助30
3秒前
LL完成签到,获得积分10
3秒前
4秒前
SEAL完成签到 ,获得积分10
4秒前
yueyueyue发布了新的文献求助10
4秒前
等待着冬日的飞雪完成签到,获得积分10
4秒前
清脆飞机完成签到,获得积分10
4秒前
能干的妙芙完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助150
5秒前
麦子完成签到 ,获得积分10
6秒前
7秒前
ZTF完成签到,获得积分10
7秒前
彭于晏应助Migrol采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
爆米花应助科研通管家采纳,获得10
8秒前
乐乐应助Geodada采纳,获得10
8秒前
所所应助研友_8RyzBZ采纳,获得10
8秒前
大模型应助科研通管家采纳,获得10
8秒前
anya完成签到,获得积分10
8秒前
Ava应助科研通管家采纳,获得10
8秒前
华仔应助早睡早起采纳,获得10
9秒前
9秒前
追寻猫咪应助科研通管家采纳,获得10
9秒前
酷波er应助科研通管家采纳,获得10
9秒前
顾矜应助科研通管家采纳,获得10
9秒前
充电宝应助科研通管家采纳,获得10
9秒前
9秒前
10秒前
夏禾绿完成签到 ,获得积分10
10秒前
Xiaoxiao应助科研通管家采纳,获得50
10秒前
10秒前
追寻猫咪应助科研通管家采纳,获得20
10秒前
我是老大应助科研通管家采纳,获得10
10秒前
今后应助梭梭采纳,获得10
10秒前
英姑应助科研通管家采纳,获得150
10秒前
同花顺完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5074953
求助须知:如何正确求助?哪些是违规求助? 4294878
关于积分的说明 13382686
捐赠科研通 4116573
什么是DOI,文献DOI怎么找? 2254349
邀请新用户注册赠送积分活动 1258893
关于科研通互助平台的介绍 1191820