亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Progress of nanocrystalline growth kinetics based on oriented attachment

奥斯特瓦尔德成熟 动力学 机制(生物学) 晶体生长 材料科学 背景(考古学) 纳米技术 纳米晶 结晶 纳米晶材料 Crystal(编程语言) 化学物理 化学工程 化学 结晶学 计算机科学 物理 程序设计语言 量子力学 工程类 古生物学 生物
作者
Jing Zhang,Feng Huang,Zhang Lin
出处
期刊:Nanoscale [The Royal Society of Chemistry]
卷期号:2 (1): 18-34 被引量:525
标识
DOI:10.1039/b9nr00047j
摘要

The crystal growth mechanism, kinetics, and microstructure development play a fundamental role in tailoring the materials with controllable sizes and morphologies. The classical crystal growth kinetics-Ostwald ripening (OR) theory is usually used to explain the diffusion-controlled crystal growth process, in which larger particles grow at the expense of smaller particles. In nanoscale systems, another significant mechanism named "oriented attachment (OA)" was found, where nanoparticles with common crystallographic orientations directly combine together to form larger ones. Comparing with the classical atom/molecular-mediated crystallization pathway, the OA mechanism shows its specific characteristics and roles in the process of nanocrystal growth. In recent years, the OA mechanism has been widely reported in preparing low-dimension nanostructural materials and reveals remarkable effects on directing and mediating the self-assembly of nanocrystals. Currently, the interests are more focused on the investigation of its role rather than the comprehensive insight of the mechanism and kinetics. The inner complicacy of crystal growth and the occurrence of coexisting mechanisms lead to the difficulty and lack of understanding this growth process by the OA mechanism.In this context, we review the progress of the OA mechanism and its impact on materials science, and especially highlight the OA-based growth kinetics aiming to achieve a further understanding of this crystal growth route. To explore the OA-limited growth, the influence of the OR mechanism needs to be eliminated. The introduction of strong surface adsorption was reported as the effective solution to hinder OR from occurring and facilitate the exclusive OA growth stage. A detailed survey of the nanocrystal growth kinetics under the effect of surface adsorption was presented and summarized. Moreover, the development of OA kinetic models was systematically generalized, in which the "molecular-like" kinetic models were built to take the OA nanocrystal growth behavior as the collision and reaction between molecules. The development of OA growth kinetics can provide a sufficient understanding of crystal growth, and the awareness of underlying factors in the growth will offer promising guidance on how to control the size distribution and shape development of nanostructural materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
JamesPei应助酷炫画板采纳,获得30
3秒前
4秒前
笑傲完成签到,获得积分10
4秒前
fleee发布了新的文献求助10
5秒前
9秒前
桐乐完成签到,获得积分10
9秒前
fleee完成签到,获得积分10
13秒前
14秒前
14秒前
Owen应助wantong采纳,获得10
16秒前
耳东发布了新的文献求助10
17秒前
耳东完成签到,获得积分10
30秒前
31秒前
jacky1应助MDW采纳,获得10
33秒前
小花小宝和阿飞完成签到 ,获得积分10
35秒前
lune发布了新的文献求助10
38秒前
houshyari完成签到,获得积分10
39秒前
酷炫画板完成签到 ,获得积分10
41秒前
jewelliang发布了新的文献求助10
42秒前
42秒前
44秒前
舒适的方盒完成签到 ,获得积分10
45秒前
46秒前
ZJY关注了科研通微信公众号
48秒前
monica发布了新的文献求助10
49秒前
Orange应助大气思菱采纳,获得10
50秒前
50秒前
szx233完成签到 ,获得积分10
51秒前
仰勒完成签到 ,获得积分10
52秒前
ali777完成签到,获得积分10
53秒前
余念安完成签到 ,获得积分10
55秒前
科研通AI6应助monica采纳,获得10
56秒前
57秒前
碳酸芙兰完成签到,获得积分10
59秒前
酷炫画板发布了新的文献求助30
1分钟前
1分钟前
科研通AI2S应助jewelliang采纳,获得10
1分钟前
1分钟前
归尘发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5432182
求助须知:如何正确求助?哪些是违规求助? 4544929
关于积分的说明 14194764
捐赠科研通 4464222
什么是DOI,文献DOI怎么找? 2447012
邀请新用户注册赠送积分活动 1438313
关于科研通互助平台的介绍 1415151