Landscape Development, Forest Fires, and Wilderness Management

地形地貌 地质学 荒野 沉积沉积环境 地球科学 植被(病理学) 沉积岩 古生物学 山脉(可选) 生态学 构造盆地 医学 生物 金融经济学 病理 经济
作者
H. E. Wright
出处
期刊:Science [American Association for the Advancement of Science (AAAS)]
卷期号:186 (4163): 487-495 被引量:148
标识
DOI:10.1126/science.186.4163.487
摘要

Both the landforms and the vegetation of the earth develop to states that are maintained in dynamic equilibrium. Short-term equilibrium of a hillslope or river valley results from intersection between erosional and depositional tendencies, controlled by gravitational force and the efficiency of the transporting medium. Long-term equilibrium of major landforms depends on crustal uplift and the resistance of the rock to weathering. In most parts of the world landscape evolves toward a peneplain, but the reduction rate approaches zero as the cycle progresses, and the counteracting force of crustal uplift intercedes before the end form is reached. Davis described this theoretical model in elegant terms. Leopold and Hack have provided a new and quantitative understanding of short-range geomorphic interactions that tend to discredit the Davisian model in the eyes of many. However, the substitute models of quasi-equilibrium or dynamic equilibrium merely describe short-range situations in which this or that Davisian stage is maintained despite uplift or downwasting. Given crustal stability and an unchanging climate, landforms would presumably still evolve through Davisian stages. However, the Davis model cannot be tested, for despite tremendous inventions in geochronology and impressive advances in stratigraphic knowledge, we cannot yet establish the rates or even the fact of crustal uplift in most areas. We are left with an unresolvable problem, for the sedimentary records of erosional history are largely inaccessible, undatable, and indecipherable, at least in the detail necessary to describe long-term evolution of the landscape. We know more about the evolution and maintenance of vegetation assemblages than about landform evolution, for even long-term vegetation sequences are within the scope of radiocarbon dating, and the biostratigraphic record is detailed. Even here, however, distinctions between short-term and long-term situations must be made, so that Clements' grand scheme of vegetational climax—created soon after Davis's model of landform development—can be evaluated in terms of modern knowledge. Disillusion with the climax model paralleled disillusion with Davis's model in the 1950's, but the climax model can be tested, because the record of vegetational history is accessible, datable, and decipherable. In the short term of a few decades, successional vegetation stages occur in a variety of situations, as confirmed by observation or by techniques such as tree-ring analysis. The successional vegetation stages are reactions to nutrients, weather, competition, and consumption. Such succession implies long-term disequilibrium, or at least unidirectional development. The long-term controlling factor in Clements' model of vegetation development is climate. With climatic stability the succession will proceed to a climax. In the Appalachian Mountains, geomorphic, microclimatic, and edaphic conditions limit climax development, producing a polyclimax, which is generally sustained by the dominance of these factors. Death and regeneration of single forest trees is controlled mostly by windstorms. The distributional pattern may be locally transected by lightning fires, major windstorms, or washouts. However, the long-term stability of Appalachian forests is demonstrated by pollen stratigraphy. Although we can infer the long-term stability of Appalachian forests, the trends and mechanics of short-term vegetational succession are not fully understood, because lack of sizable areas of virgin forest limits investigations of natural conditions. In this respect, the eastern United States is already much like western Europe, where climatic and disturbance factors in vegetational history cannot be disentangled. In the Great Lakes region, a large area of virgin forest exists in the BWCA of northeastern Minnesota. Here short- and long-term studies show that for at least 9000 years the principal stabilizing factor has been the frequent occurrence of fire. Major fires occur so often that the vegetation pattern is a record of fire history. All elements in the forest mosaic are in various stages of postfire succession, with only a few approaching climax. Fire interrupts the successful sequence toward climax. Geomorphic and edaphic factors in vegetational distribution are largely submerged by the fire regime, except for bog and other lowland vegetation. Fire recycles nutrients and renews succession. Nevertheless, despite the fire regime, the resulting long-term equilibrium of the forest mosaic, characterized by severe and irregular fluctuations of individual elements, reflects regional climate. In the BWCA and the western mountains, large virgin forests can be preserved for study and wilderness recreation. These wilderness areas must be managed to return them to the natural equilibrium which has been disturbed by 50 to 70 years of fire suppression. The goal should be to maintain virgin forests as primeval wilderness. This can be done by management that permits fire and other natural processes to determine the forest mosaic. Mechanized tree-felling and other human disturbances should be kept to an absolute minimum. Natural landforms also should be preserved for study and for certain nondestructive recreational activities. It is somewhat late for the Colorado River and other rivers of the West, because natural balances are upset by drainagebasin disturbances. Modification of plant cover on hillslopes changes infiltration and erosion rates and thus the stream discharge and sediment load, so the stream balance is altered from primeval conditions. Scenic Rivers legislation should thus be used to restore certain river systems and their drainage basins. Mountain meadows, badlands, desert plains, and patterned permafrost terrain are extremely fragile and sensitive. Intricate stream and weathering processes leave patterns easily obliterated by mechanized vehicles. Tire tracks can last for decades or centuries. The mineral patina or lichen cover on desert or alpine rocks are records of long stability, and slight differences in their development record the relative ages of landforms, to the year in the case of lichens. Delicate color differences in a talus slope or desert fan show long-term effects just as does the arboreal vegetation mosaic in another climatic setting. Preservation of virgin wilderness for study is viewed by some as a selfish goal of scientists, to be achieved at the expense of commercial and recreational development. However, scientific study and nonmechanized recreational uses are compatible in wilderness areas. Furthermore, the public does appreciate intellectual stimulation from natural history, as witnessed by massive support for conservation, the Wilderness Act, and a dozen magazines like National Geographic . Finally, no knowledgeable American today is unaware that ecological insights are necessary to preserve the national heritage. Western dust bowls, deforested slopes, gullied fields, silted rivers, strip mine wastelands, and the like might have been avoided had long-term problems been balanced against short-term profits. Many economic questions cannot be answered intelligently without detailed knowledge of extensive virgin ecosystems. Long-term values are enhanced by those uses of natural resources that are compatible with the preservation of natural ecosystems. Esthetically, virgin wilderness produced by nature is comparable to an original work of art produced by man. One deserves preservation as much as the other, and a copy of nature has as little value to the scientist or discerning layman as a reproduction of a painting has to an art scholar or an art collector. Nature deserves its own display, not just in tiny refuges but in major landscapes. Man is only one of literally countless species on the earth. Man developed for a million years in a world ecosystem that he is now in danger of destroying for short-term benefits. For his long-term survival and as an expression of his rationality and morality, he should nurture natural ecosystems. Some people believe that human love of nature is self-protective. For many it is the basis of natural religion. The opposition of many Americans to the Alaska pipeline is a manifestation of almost religious feeling; most never expect to see the Alaskan wilderness, but they are heartened to realize that it exists and is protected. The same can be said of those who contribute to save the redwoods in California. Here cost analysis fails to account for the enormous value people place on nature and on the idea of nature as contrasted to the private gain of a few developers. Americans admire European preservation of works of art. Europeans admire American foresight in setting aside national parks. However, the distribution of protected natural areas in America is uneven and inadequate, and vast areas continue to be developed or badly managed despite widespread new knowledge about long-term human interest in wilderness preservation. Darwin turned nature study into the study of natural history. He could observe natural features in vast undisturbed areas with no thought that human interference had been a factor in their development. Today such natural landscapes have practically vanished. Those that remain should be preserved as extensively as possible, and managed with scientific knowledge of the natural processes that brought them to being. At the present accelerating rate of exploitation, massive disturbance, and unscientific management, soon no natural areas
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
科研通AI6应助李马克采纳,获得10
1秒前
万能图书馆应助happiness采纳,获得10
1秒前
俭朴果汁发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
大胆凡白完成签到,获得积分10
2秒前
bmhs2017应助science采纳,获得10
3秒前
4秒前
4秒前
无语的兰关注了科研通微信公众号
4秒前
flylmy2008发布了新的文献求助10
5秒前
幺幺幺发布了新的文献求助10
5秒前
科研牛马发布了新的文献求助20
6秒前
WangJ1018完成签到,获得积分20
6秒前
lisn发布了新的文献求助10
6秒前
老阎应助水果采纳,获得30
6秒前
万能图书馆应助俭朴果汁采纳,获得10
6秒前
NexusExplorer应助饱满的靖易采纳,获得10
6秒前
lijiao发布了新的文献求助10
6秒前
小章完成签到,获得积分10
9秒前
Lucas应助呆二龙采纳,获得10
9秒前
共享精神应助呆二龙采纳,获得10
9秒前
10秒前
Esther发布了新的文献求助10
11秒前
尤里有气发布了新的文献求助10
11秒前
12秒前
今后应助lisn采纳,获得10
13秒前
14秒前
可爱的以松完成签到 ,获得积分10
14秒前
14秒前
happiness发布了新的文献求助10
15秒前
lwroche完成签到,获得积分10
16秒前
余呀余完成签到 ,获得积分10
16秒前
归尘发布了新的文献求助10
16秒前
大胆凡白发布了新的文献求助10
17秒前
周士翔完成签到,获得积分10
17秒前
19秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5382591
求助须知:如何正确求助?哪些是违规求助? 4505701
关于积分的说明 14022478
捐赠科研通 4415103
什么是DOI,文献DOI怎么找? 2425372
邀请新用户注册赠送积分活动 1418138
关于科研通互助平台的介绍 1396207