Image classification of root-trimmed garlic using multi-label and multi-class classification with deep convolutional neural network

修边 人工智能 卷积神经网络 计算机科学 模式识别(心理学) 人工神经网络 上下文图像分类 班级(哲学) 辍学(神经网络) 机器学习 图像(数学) 操作系统
作者
Pham Thi Quynh Anh,Dang Quoc Thuyet,Yuichi Kobayashi
出处
期刊:Postharvest Biology and Technology [Elsevier]
卷期号:190: 111956-111956 被引量:24
标识
DOI:10.1016/j.postharvbio.2022.111956
摘要

Garlic root trimming is one of the most tedious tasks in the postharvest processing of garlic since the evaluation of trimming results is done by mainly visual inspection for each label of a garlic bulb. Currently, multi-class classification using a deep convolutional neural network (CNN) can automate the evaluation process. However, it can handle only a single label per a garlic image and cannot be used for evaluation of multi-labels in conventional garlic root trimming practices. This study introduced a modified multi-class model and a multi-label model that utilized CNN to classify two labels of a garlic bulb after root trimming. The first label includes good, bad, untrimmed and scratched classes, and the second label consists of clean and muddy classes. The modified multi-class model achieved a classification accuracy of 82.9% while the multi-label gave a better classification performance of minor classes, with an overall accuracy of 95.2%. With the addition of a background image class, classification accuracies of both multi-class model and multi-label model increased to 91.8% and 98.0%, respectively. The background class significantly enhanced the classification performance of multi-label model when it was deployed to a garlic sorting robot. The utilization of data augmentation, dropout, transfer learning and fine-tuning was confirmed to improve model generalization and performance. Multi-label model is recommended for grading of garlic bulbs with multi-labels of after root trimming. The time to process an image was 0.021 s, which is suitable for a real-time garlic sorting and grading robot. The method shows a potential for development of a smart and fully autonomous robots in the postharvest processing for garlic production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
范12发布了新的文献求助10
刚刚
刚刚
月神满月完成签到,获得积分10
1秒前
1秒前
科研通AI2S应助黄钦清采纳,获得10
1秒前
nml完成签到,获得积分10
1秒前
浮游应助黄钦清采纳,获得10
1秒前
爆米花应助zbing采纳,获得10
2秒前
小王完成签到,获得积分20
2秒前
简单海发布了新的文献求助10
2秒前
FashionBoy应助轻松的曼凡采纳,获得10
3秒前
复杂炒饼完成签到 ,获得积分10
3秒前
feiluo2012完成签到,获得积分10
3秒前
4秒前
陆小齐完成签到,获得积分10
4秒前
啊张发布了新的文献求助30
5秒前
shirely完成签到,获得积分10
5秒前
酷波er应助_hyl采纳,获得50
5秒前
nml发布了新的文献求助10
6秒前
6秒前
充电宝应助哈哈哈采纳,获得10
6秒前
小白完成签到,获得积分10
7秒前
看风景的小熊完成签到,获得积分10
7秒前
sun发布了新的文献求助10
7秒前
epmoct发布了新的文献求助10
7秒前
洽洽瓜子shine完成签到,获得积分10
7秒前
fwb发布了新的文献求助10
8秒前
8秒前
10秒前
zx完成签到,获得积分10
11秒前
梵高完成签到,获得积分10
11秒前
科研通AI6应助忆塔基采纳,获得10
11秒前
11秒前
12秒前
12秒前
Icelyn完成签到,获得积分20
13秒前
RaynorHank发布了新的文献求助10
13秒前
zyq完成签到,获得积分10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
扫描探针电化学 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5439708
求助须知:如何正确求助?哪些是违规求助? 4550755
关于积分的说明 14226292
捐赠科研通 4471853
什么是DOI,文献DOI怎么找? 2450516
邀请新用户注册赠送积分活动 1441452
关于科研通互助平台的介绍 1417930