Water quality forecasting based on data decomposition, fuzzy clustering and deep learning neural network

聚类分析 计算机科学 数据挖掘 水质 人工神经网络 模糊逻辑 时间序列 人工智能 机器学习 生态学 生物
作者
Jin‐Won Yu,Ju-Song Kim,Xia Li,Yunchol Jong,Kwang-Hun Kim,Gwang‐Il Ryang
出处
期刊:Environmental Pollution [Elsevier BV]
卷期号:303: 119136-119136 被引量:52
标识
DOI:10.1016/j.envpol.2022.119136
摘要

Water quality forecasting can provide useful information for public health protection and support water resources management. In order to forecast water quality more accurately, this paper proposes a novel hybrid model by combining data decomposition, fuzzy C-means clustering and bidirectional gated recurrent unit. Firstly, the original water quality data is decomposed into several subseries by empirical wavelet transform, and then, the decomposed subseries are recombined by fuzzy C-means clustering. Next, for each clustered series, bidirectional gated recurrent unit is applied to develop prediction model. Finally, the forecast result is obtained by the summation of the predictions for the subseries. The proposed forecast model is evaluated by the water quality data of Poyang Lake, China. Results show that the proposed forecast model provides highly accurate forecast result for all of the six water quality data: the average of MAPE of the forecast results for the six water quality datasets is 4.59% for 7 day ahead prediction. Furthermore, our model shows better forecast performance than the other models. Particularly, compared with the single BiGRU model, MAPE decreased by 32.86% in average. Results demonstrate that the proposed forecast model can be used effectively for water quality forecasting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ltutui7发布了新的文献求助10
1秒前
踏实的老四完成签到,获得积分20
1秒前
3秒前
香蕉觅云应助踏实的老四采纳,获得10
4秒前
斯文败类应助缘来如风采纳,获得10
5秒前
一沙发布了新的文献求助10
6秒前
奋斗橘子应助乌梅丸采纳,获得10
6秒前
zz完成签到,获得积分10
6秒前
冷酷芫完成签到,获得积分10
7秒前
7秒前
赘婿应助激昂的吐司采纳,获得20
8秒前
所所应助好大一只小坏蛋采纳,获得10
11秒前
Joaquin完成签到 ,获得积分10
12秒前
Akim应助英俊白玉采纳,获得10
13秒前
jenningseastera应助梅哈采纳,获得10
13秒前
Rsquo发布了新的文献求助10
13秒前
小鱼同学完成签到 ,获得积分10
14秒前
万能图书馆应助顺利平文采纳,获得10
14秒前
仲夏发布了新的文献求助10
14秒前
15秒前
奋斗橘子应助东方天奇采纳,获得10
17秒前
Hello应助会撒娇的白昼采纳,获得10
18秒前
ZHANG完成签到,获得积分10
22秒前
大胆的弼发布了新的文献求助10
22秒前
李健的小迷弟应助小飞飞采纳,获得10
23秒前
24秒前
24秒前
maclogos发布了新的文献求助10
25秒前
科研通AI5应助温暖寻琴采纳,获得10
25秒前
天天快乐应助尚可采纳,获得10
25秒前
科研通AI5应助海藻采纳,获得10
26秒前
Owen应助淡然的大碗采纳,获得10
28秒前
胡图图发布了新的文献求助10
28秒前
不想吃大蒜完成签到 ,获得积分10
30秒前
吃的饭广泛完成签到 ,获得积分10
30秒前
搜集达人应助竺兰舞采纳,获得10
30秒前
32秒前
32秒前
英姑应助狐狐是垫的采纳,获得10
32秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3845211
求助须知:如何正确求助?哪些是违规求助? 3387334
关于积分的说明 10549091
捐赠科研通 3108104
什么是DOI,文献DOI怎么找? 1712376
邀请新用户注册赠送积分活动 824385
科研通“疑难数据库(出版商)”最低求助积分说明 774751