DFAID: Density‐aware and feature‐deviated active intrusion detection over network traffic streams

计算机科学 入侵检测系统 杠杆(统计) 数据挖掘 聚类分析 特征(语言学) 特征向量 人工智能 异常检测 数据流挖掘 机器学习 模式识别(心理学) 语言学 哲学
作者
Bin Li,Yijie Wang,Kele Xu,Li Cheng,Zhiquan Qin
出处
期刊:Computers & Security [Elsevier BV]
卷期号:118: 102719-102719 被引量:4
标识
DOI:10.1016/j.cose.2022.102719
摘要

We study the problem of active intrusion detection over network traffic streams. Existing works create clusters for known classes and manually label instances outside the clusters for detecting novel attack classes and concept drift, yet several challenges are present. First, these methods assume that different classes of network traffic distribute far from each other in feature space, while similar attack classes could violate this assumption. It makes the true novel classes and concept drift undetectable, therefore a degraded performance. Second, prior works depending on heavily calculating and retraining cannot achieve efficient incremental updates over the infinite and high-speed streams of network traffic. Last, related methods rarely leverage the domain knowledge in intrusion detection. To address these issues, we propose DFAID, a Density-aware and Feature-deviated Active Intrusion Detection framework over network traffic streams. We first design the mask density score and the feature deviation score to maximize the effectiveness of labeled instances, effectively detecting novel attack classes and the concept drift when similar classes exist. Then, DFAID leverages robust incremental clustering structures to group instances in local regions, relieving the burden on the speed and reducing effects of noisy instances. Last, we further present DFAID-DK by incorporating the Domain Knowledge of temporal correlations between network attacks to correct the wrong predictions. Extensive experiments on two well-known benchmarks, CIC-IDS2017 and ISCX-2012, demonstrate that DFAID and its variation DFAID-DK both achieve significant improvement compared with related methods in terms of f1-score (21.7%, 22.7%) on average, and its running speed is an order of magnitude faster.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI5应助牛阳雨采纳,获得10
刚刚
张小南完成签到,获得积分10
刚刚
1秒前
青柑枸杞完成签到,获得积分10
1秒前
研友_VZG7GZ应助xh采纳,获得10
2秒前
2秒前
aabbccwy完成签到,获得积分10
2秒前
unfeeling8完成签到 ,获得积分10
2秒前
阿橘完成签到,获得积分10
2秒前
猫里小七完成签到,获得积分10
3秒前
乐乐应助梅仑西西采纳,获得10
4秒前
4秒前
4秒前
5秒前
狄谷南完成签到,获得积分10
5秒前
无花果应助可乐采纳,获得20
6秒前
6秒前
抹茶麻薯发布了新的文献求助10
7秒前
7秒前
非烟完成签到,获得积分20
7秒前
enh发布了新的文献求助30
8秒前
8秒前
9秒前
9秒前
充电宝应助1111采纳,获得10
9秒前
kiska发布了新的文献求助20
9秒前
CNAxiaozhu7举报long求助涉嫌违规
9秒前
黄腾应助云汐儿采纳,获得10
10秒前
10秒前
zzz发布了新的文献求助10
11秒前
脑洞疼应助小明采纳,获得10
11秒前
xiaoshuwang完成签到,获得积分10
11秒前
11秒前
和谐续完成签到 ,获得积分10
11秒前
12秒前
zl12345发布了新的文献求助10
12秒前
13秒前
13秒前
13秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Understanding Interaction in the Second Language Classroom Context 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808831
求助须知:如何正确求助?哪些是违规求助? 3353506
关于积分的说明 10365583
捐赠科研通 3069749
什么是DOI,文献DOI怎么找? 1685746
邀请新用户注册赠送积分活动 810704
科研通“疑难数据库(出版商)”最低求助积分说明 766300