Multifaceted 3D-QSAR analysis for the identification of pharmacophoric features of biphenyl analogues as aromatase inhibitors

数量结构-活动关系 药效团 化学 芳香化酶 立体化学 联苯 对接(动物) 计算化学 生物 有机化学 癌症 医学 护理部 乳腺癌 遗传学
作者
Laxmi Banjare,Yogesh Singh,Sant Kumar Verma,Atul Kumar Singh,Pradeep Kumar,Shashank Kumar,Akhlesh Kumar Jain,Suresh Thareja
出处
期刊:Journal of Biomolecular Structure & Dynamics [Taylor & Francis]
卷期号:41 (4): 1322-1341 被引量:5
标识
DOI:10.1080/07391102.2021.2019122
摘要

Aromatase, a cytochrome P450 enzyme, is responsible for the conversion of androgens to estrogens, which fuel the multiplication of cancerous cells. Inhibition of estrogen biosynthesis by aromatase inhibitors (AIs) is one of the highly advanced therapeutic approach available for the treatment of estrogen-positive breast cancer. Biphenyl moiety aids lipophilicity to the conjugated scaffold and enhances the accessibility of the ligand to the target. The present study is focused on the investigation of, the mode of binding of biphenyl with aromatase, prediction of ligand-target binding affinities, and pharmacophoric features essential for favorable for aromatase inhibition. A multifaceted 3D-QSAR (SOMFA, Field and Gaussian) along with molecular docking, molecular dynamic simulations and pharmacophore mapping were performed on a series of biphenyl bearing molecules (1–33) with a wide range of aromatase inhibitory activity (0.15–920 nM). Among the generated 3D-QSAR models, the Force field-based 3D-QSAR model (R2 = 0.9151) was best as compared to SOMFA and Gaussian Field (R2=0.7706, 0.9074, respectively). However, all the generated 3D-QSAR models were statistically fit, robust enough, and reliable to explain the variation in biological activity in relation to pharmacophoric features of dataset molecules. A four-point pharmacophoric features with three acceptor sites (A), one aromatic ring (R) features, AAAR_1, were obtained with the site and survival score values 0.890 and 4.613, respectively. The generated 3D-QSAR plots in the study insight into the structure–activity relationship of dataset molecules, which may help in the designing of potent biphenyl derivatives as newer inhibitors of aromatase.Communicated by Ramaswamy H. Sarma
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yushanriqing完成签到,获得积分10
刚刚
5tr1ve发布了新的文献求助10
1秒前
橙子完成签到,获得积分20
1秒前
科研通AI2S应助fantasy采纳,获得10
1秒前
1秒前
浮游应助快乐湘采纳,获得10
1秒前
kk关闭了kk文献求助
1秒前
科研通AI6应助meng采纳,获得10
1秒前
1秒前
Roger完成签到,获得积分10
2秒前
琳琅完成签到,获得积分10
3秒前
爱科研的文西完成签到,获得积分10
3秒前
fyy完成签到,获得积分20
3秒前
852应助文献蚂蚁采纳,获得10
3秒前
3秒前
3秒前
腼腆的沛蓝完成签到,获得积分20
4秒前
Carol发布了新的文献求助10
4秒前
可爱的函函应助谢志超采纳,获得10
4秒前
橙子发布了新的文献求助10
4秒前
轻松铸海发布了新的文献求助10
5秒前
玛卡巴卡发布了新的文献求助10
5秒前
科目三应助小孙要努力采纳,获得10
5秒前
6秒前
6秒前
姜姜发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
科研通AI6应助成功采纳,获得10
7秒前
小二郎应助明亮的泥猴桃采纳,获得30
8秒前
8秒前
怡然嚣完成签到 ,获得积分10
9秒前
花海完成签到,获得积分10
9秒前
西羽徐发布了新的文献求助10
9秒前
SciGPT应助ZZQ采纳,获得10
9秒前
fantasy发布了新的文献求助10
10秒前
玩命的妙之关注了科研通微信公众号
11秒前
不想长大发布了新的文献求助10
11秒前
xiaoxin发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5261422
求助须知:如何正确求助?哪些是违规求助? 4422535
关于积分的说明 13766643
捐赠科研通 4297013
什么是DOI,文献DOI怎么找? 2357641
邀请新用户注册赠送积分活动 1354024
关于科研通互助平台的介绍 1315182