Efficient Short-Term Electricity Load Forecasting for Effective Energy Management

均方误差 计算机科学 残余物 平均绝对百分比误差 能源管理 能源消耗 电力负荷 人工神经网络 人工智能 卷积神经网络 期限(时间) 数据挖掘 能量(信号处理) 功率(物理) 工程类 统计 物理 数学 算法 量子力学 电气工程
作者
Zulfiqar Ahmad Khan,Amin Ullah,Ijaz Ul Haq,Mohamed S. Hamdy,Gerardo Maria Mauro,Khan Muhammad,Mohammad Hijji,Sung Wook Baik
出处
期刊:Sustainable Energy Technologies and Assessments [Elsevier BV]
卷期号:53: 102337-102337 被引量:77
标识
DOI:10.1016/j.seta.2022.102337
摘要

• A two-phased framework for short-term electricity forecasting. • A novel data preprocessing strategy is introduced to refine the raw data. • An end-to-end hybrid residual CNN with stacked LSTM model for electricity forecasting. • A detailed ablation study is conducted to ensure the effectiveness of proposed model. • The performance is compared with state-of-the-art models over several benchmark datasets. Short-term electrical energy load forecasting is one of the most significant problems associated with energy management for smart grids, which aims to optimize the operational strategies of buildings. Electricity forecasting models are considered a key aspect of the provision of better electricity management and reductions in energy consumption. This motivates the researchers to develop efficient electricity load forecasting (ELF) models, based on historical nonlinear and high volatile data, which require appropriate forecasting strategies. Therefore, in this article, we present an innovative two-phase framework for short-term ELF. The first phase is dedicated to data cleansing, in which pre-processing strategies are applied to raw data. In the second phase, a deep residual Convolutional Neural Network (CNN) is designed to extract the important features from the refined data. To the best of our knowledge, this is the first work to introduce a deep CNN architecture for the extraction of spatial features from electricity data. The output of the residual CNN network is forwarded to a stacked Long Short-Term Memory (LSTM) network to learn the temporal information of the electricity data. The proposed model is then evaluated using the Individual-Household-Electric-Power-Consumption (IHEPC) and Pennsylvania–New Jersey–Maryland (PJM) datasets. The results reveal a significant reduction in the error rate over the IHEPC dataset in terms of Mean-Absolute-Error (MAE) (15.65%), Mean-Square-Error (MSE) (8.77%), and Root-Mean-Square-Error (RMSE) (14.85%) and over the PJM dataset our method reduced RMSE up to 3.4% as compared to baseline models i.e., linear regression, LSTM, and Gated Recurrent Unit (GRU). Furthermore, we performed several experiments with CNN, LSTM, and GRU models and evaluated it with additional Coefficient of Variation of the RMSE (CV-RMSE) metrics, which proves the effectiveness of our model for short-term load forecasting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冰魂应助糊涂的芷天采纳,获得20
刚刚
Alex应助7777777采纳,获得20
1秒前
1秒前
小科发布了新的文献求助10
1秒前
However完成签到,获得积分10
1秒前
学术蛔虫完成签到 ,获得积分10
2秒前
小梁砖家发布了新的文献求助30
2秒前
科研通AI5应助范范采纳,获得30
2秒前
酷波er应助YellowStar采纳,获得10
3秒前
拓跋涵易完成签到,获得积分10
3秒前
xxxxxliang完成签到,获得积分10
4秒前
huofuman完成签到,获得积分10
4秒前
八号向日葵完成签到 ,获得积分10
5秒前
Hang完成签到,获得积分10
5秒前
端庄的小翠完成签到 ,获得积分10
5秒前
飞星完成签到,获得积分10
5秒前
charon完成签到,获得积分20
5秒前
cdercder应助wen采纳,获得10
6秒前
思源应助吃货采纳,获得10
6秒前
斯文败类应助微笑冥幽采纳,获得10
6秒前
Alicyclobacillus完成签到,获得积分10
6秒前
6秒前
微微完成签到,获得积分10
7秒前
ifast发布了新的文献求助10
7秒前
SciGPT应助平淡南松采纳,获得10
8秒前
9秒前
9秒前
科研通AI5应助charon采纳,获得10
9秒前
义气的咖啡豆完成签到,获得积分10
10秒前
高序完成签到,获得积分10
10秒前
嗯哼发布了新的文献求助10
10秒前
11秒前
YellowStar完成签到,获得积分10
11秒前
11秒前
隐形曼青应助碧蓝的以彤采纳,获得10
12秒前
12秒前
庄彧完成签到 ,获得积分10
12秒前
13秒前
13秒前
阿里巴巴完成签到,获得积分10
13秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
System of systems: When services and products become indistinguishable 300
How to carry out the process of manufacturing servitization: A case study of the red collar group 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3811949
求助须知:如何正确求助?哪些是违规求助? 3356363
关于积分的说明 10381521
捐赠科研通 3073459
什么是DOI,文献DOI怎么找? 1688321
邀请新用户注册赠送积分活动 811941
科研通“疑难数据库(出版商)”最低求助积分说明 766933