Identification of Location Specific Feature Points in a Cardiac Cycle Using a Novel Seismocardiogram Spectrum System

心脏周期 特征(语言学) 心脏病学 心电图 医学 内科学 衰减 收缩(语法) 计算机科学 物理 光学 哲学 语言学
作者
Wen‐Yen Lin,Tsai-Hsuan Tsai,Ming‐Yih Lee,Wen-Cheng Chou,Po‐Cheng Chang,Chung‐Chuan Chou,Ming-Shien Wen,Ming-Yun Ho,Wen-Chen Lee,Ming‐Jer Hsieh,Chung‐Chih Lin
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:22 (2): 442-449 被引量:55
标识
DOI:10.1109/jbhi.2016.2620496
摘要

Seismocardiogram (SCG) or mechanocardiography is a noninvasive cardiac diagnostic method; however, previous studies used only a single sensor to detect cardiac mechanical activities that will not be able to identify location-specific feature points in a cardiac cycle corresponding to the four valvular auscultation locations. In this study, a multichannel SCG spectrum measurement system was proposed and examined for cardiac activity monitoring to overcome problems like, position dependency, time delay, and signal attenuation, occurring in traditional single-channel SCG systems. ECG and multichannel SCG signals were simultaneously recorded in 25 healthy subjects. Cardiac echocardiography was conducted at the same time. SCG traces were analyzed and compared with echocardiographic images for feature point identification. Fifteen feature points were identified in the corresponding SCG traces. Among them, six feature points, including left ventricular lateral wall contraction peak velocity, septal wall contraction peak velocity, transaortic peak flow, transpulmonary peak flow, transmitral ventricular relaxation flow, and transmitral atrial contraction flow were identified. These new feature points were not observed in previous studies because the single-channel SCG could not detect the location-specific signals from other locations due to time delay and signal attenuation. As the results, the multichannel SCG spectrum measurement system can record the corresponding cardiac mechanical activities with location-specific SCG signals and six new feature points were identified with the system. This new modality may help clinical diagnoses of valvular heart diseases and heart failure in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小胖鱼发布了新的文献求助10
2秒前
天天快乐应助刘梦钊采纳,获得10
2秒前
4秒前
Lucas应助复杂的海采纳,获得10
6秒前
6秒前
6秒前
想要用不完的积分完成签到,获得积分10
6秒前
小蘑菇应助与自我同频采纳,获得10
8秒前
9秒前
9秒前
悲凉的大娘完成签到 ,获得积分10
9秒前
9秒前
9秒前
Baituole77发布了新的文献求助10
10秒前
笑点低的代容完成签到,获得积分10
10秒前
10秒前
糖糖糖唐完成签到,获得积分10
10秒前
Xiong完成签到,获得积分10
10秒前
bbll完成签到,获得积分10
10秒前
10秒前
勤奋小懒虫完成签到,获得积分10
12秒前
传奇3应助nakeyi采纳,获得10
12秒前
科研公主发布了新的文献求助10
12秒前
14秒前
刘梦钊发布了新的文献求助10
14秒前
南塘发布了新的文献求助10
14秒前
优美平凡发布了新的文献求助10
15秒前
Ruoru发布了新的文献求助10
15秒前
15秒前
个性完成签到,获得积分10
15秒前
所所应助www采纳,获得10
16秒前
dada完成签到,获得积分10
17秒前
17秒前
笑点低歌曲完成签到,获得积分10
19秒前
Baituole77完成签到,获得积分10
19秒前
Henry完成签到,获得积分10
20秒前
大个应助刘梦钊采纳,获得10
21秒前
麻木子发布了新的文献求助10
22秒前
撒西不理完成签到,获得积分10
24秒前
阿龙发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604157
求助须知:如何正确求助?哪些是违规求助? 4688985
关于积分的说明 14857229
捐赠科研通 4696839
什么是DOI,文献DOI怎么找? 2541204
邀请新用户注册赠送积分活动 1507328
关于科研通互助平台的介绍 1471851