Novel Data-Driven Framework for Predicting Residual Strength of Corroded Pipelines

支持向量机 管道(软件) 管道运输 理论(学习稳定性) 多目标优化 还原(数学) 主成分分析 计算机科学 航程(航空) 残余物 数据挖掘 维数(图论) 降维 数据集 数学优化 算法 机器学习 工程类 人工智能 数学 环境工程 航空航天工程 程序设计语言 纯数学 几何学
作者
Hongfang Lü,Zhao‐Dong Xu,Tom Iseley,John C. Matthews
出处
期刊:Journal of Pipeline Systems Engineering and Practice [American Society of Civil Engineers]
卷期号:12 (4) 被引量:59
标识
DOI:10.1061/(asce)ps.1949-1204.0000587
摘要

For the residual strength prediction of corroded pipelines, the existing standard has a small application range, and the finite-element method has too many assumptions. This paper proposes a new data-driven prediction framework. Firstly, principal component analysis (PCA) is used to reduce the dimensions of the existing data to determine the input-output structure of the prediction model. Secondly, support vector machine (SVM) based on multiobjective optimization is employed to predict the pipeline's residual strength. Compared with the traditional estimation methods, the model proposed in this paper is data-driven and combines data dimension reduction, multiobjective optimization, and a machine learning model. In addition, the accuracy and stability of the model are considered in the multiobjective optimization. The proposed framework is tested in a pipeline burst pressure data set. The results indicate that the mean absolute percentage error of the proposed models ranges from 1.353% to 3.220%, which has good prediction accuracy and stability. This paper also discusses the influence of the multiobjective optimization algorithm and dimension reduction on the prediction model. The following primary conclusions are drawn: (1) SVM optimized by multiobjective optimizer performs better than SVM optimized by the single-objective optimizer, and the original SVM performs worst, and (2) reducing the raw data dimensions can improve the residual strength prediction performance for corroded pipelines reduce the complexity of the model, and shorten the calculation time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐园鸟完成签到,获得积分10
刚刚
秋千完成签到,获得积分10
1秒前
乐乐应助孤独盼望采纳,获得10
2秒前
KKA发布了新的文献求助10
2秒前
2秒前
丢丢在吗完成签到,获得积分10
3秒前
粘豆包发布了新的文献求助10
4秒前
zojoy完成签到,获得积分10
6秒前
90发布了新的文献求助10
7秒前
8秒前
zh123完成签到,获得积分10
9秒前
今后应助李科研采纳,获得10
12秒前
12秒前
12秒前
风趣千秋完成签到,获得积分10
12秒前
HughWang完成签到,获得积分10
13秒前
旺仔小馒头完成签到 ,获得积分10
13秒前
夏一苒发布了新的文献求助10
14秒前
Alisha完成签到,获得积分10
16秒前
2211完成签到,获得积分10
16秒前
田様应助个木采纳,获得10
17秒前
Owen应助ljc采纳,获得10
17秒前
丢丢在吗发布了新的文献求助10
17秒前
吴彦祖完成签到,获得积分10
17秒前
今后应助健忘捕采纳,获得10
18秒前
22秒前
wanci应助BYN采纳,获得10
26秒前
李科研完成签到,获得积分10
27秒前
29秒前
bing完成签到,获得积分10
29秒前
自信羊发布了新的文献求助10
30秒前
35秒前
35秒前
wanda完成签到,获得积分20
35秒前
ljc完成签到,获得积分10
38秒前
甘氨酸完成签到,获得积分0
40秒前
pokexuejiao完成签到,获得积分10
40秒前
41秒前
41秒前
共享精神应助MHY采纳,获得10
41秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789463
求助须知:如何正确求助?哪些是违规求助? 3334462
关于积分的说明 10270181
捐赠科研通 3050926
什么是DOI,文献DOI怎么找? 1674234
邀请新用户注册赠送积分活动 802535
科研通“疑难数据库(出版商)”最低求助积分说明 760742