奥西默替尼
癌症研究
突变
突变体
医学
抗性突变
酪氨酸激酶
T790米
生物
遗传学
基因
内科学
聚合酶链反应
受体
克拉斯
逆转录酶
作者
Ha-Ram Park,Tae Min Kim,Yusoo Lee,Soyeon Kim,Seongyeol Park,Young Seok Ju,Tae Min Kim,Bhumsuk Keam,Yoon Kyung Jeon,Dong‐Wan Kim,Dae Seog Heo
标识
DOI:10.1016/j.jtho.2021.06.013
摘要
EGFRT790M mostly exists subclonally and is acquired as the most common mechanism of resistance to EGFR tyrosine kinase inhibitors (TKIs). Nevertheless, because de novo EGFRT790M-mutant NSCLC is rare, little is known on acquired resistance mechanisms to third-generation EGFR TKIs.Acquired resistance mechanisms were analyzed using tumor and plasma samples before and after third-generation EGFR TKI treatment in four patients with de novo EGFRT790M-mutant NSCLC. Genetic alterations were analyzed by whole-exome sequencing, targeted sequencing, fluorescence in situ hybridization, and droplet digital PCR. MTORL1433S, confirmed for oncogenicity using the Ba/F3 system, was reproduced in H1975 cell lines using CRISPR/Cas9-RNP.Of seven patients with NSCLC with de novo EGFRT790M/L858R mutation, four (LC1-4) who received third-generation EGFR TKIs acquired resistance after achieving a partial response (median = 27 mo, range: 17-48 mo). Novel MTORL1433S and EGFRC797S/L798I mutations in cis, MET amplification, and EGFRC797S mutation were identified as acquired resistance mechanisms to third-generation EGFR TKIs. The MTORL1433S mutation was oncogenic in Ba/F3 models and revealed resistance to osimertinib through AKT signaling activation in NCI-H1975 cells harboring the MTORL1433S mutation edited by CRISPR/Cas9 (half-maximal inhibitory concentration, 800 ± 67 nM). Osimertinib in combination with mTOR inhibitors abrogated acquired resistance to osimertinib.Activation of bypass pathways and the EGFRC797S or EGFRC797S/L798I mutation were identified as acquired resistance mechanisms to third-generation EGFR TKIs in patients with NSCLC with de novo EGFRT790M mutation. In addition, MTORL1433S- and EGFRL858R/T790M-mutant NSCLC cells were sensitive to osimertinib plus mTOR inhibitors.
科研通智能强力驱动
Strongly Powered by AbleSci AI