Unsupervised deep learning with higher-order total-variation regularization for multidimensional seismic data reconstruction

计算机科学 算法 欠定系统 地球物理成像 压缩传感 合成数据 正规化(语言学) 自编码 深度学习 地质学 地震学 人工智能
作者
Thomas Larsen Greiner,J.E. Lie,Odd Kolbjørnsen,Andreas Kjelsrud Evensen,Espen Harris Nilsen,Hao Zhao,Vasily Demyanov,Leiv‐J. Gelius
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:87 (2): V59-V73 被引量:29
标识
DOI:10.1190/geo2021-0099.1
摘要

In 3D marine seismic acquisition, the seismic wavefield is not sampled uniformly in the spatial directions. This leads to a seismic wavefield consisting of irregularly and sparsely populated traces with large gaps between consecutive sail lines, especially in the near offsets. The problem of reconstructing the complete seismic wavefield from a subsampled and incomplete wavefield is formulated as an underdetermined inverse problem. We have investigated unsupervised deep learning based on a convolutional neural network for multidimensional wavefield reconstruction of irregularly populated traces defined on a regular grid. Our network is based on an encoder-decoder architecture with an overcomplete latent representation, including appropriate regularization penalties to stabilize the solution. We proposed a combination of penalties, which consists of the [Formula: see text]-norm penalty on the network parameters, and a first- and second-order total-variation penalty on the model. We determined the performance of our method on broadband synthetic data and field data represented by constant-offset gathers from a source-over-cable data set from the Barents Sea. In the field data example, we compare the results to a full production flow from a contractor company, which is based on a 5D Fourier interpolation approach. In this example, our approach displays improved reconstruction of the wavefield with less noise in the sparse near offsets compared with the industry approach, which leads to improved structural definition of the near offsets in the migrated sections.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
儒雅醉冬完成签到,获得积分10
1秒前
乐观小之应助曾鸣采纳,获得10
1秒前
kingJames完成签到,获得积分10
2秒前
3秒前
FashionBoy应助Jie_huang采纳,获得10
3秒前
4秒前
白墨完成签到,获得积分10
5秒前
lllllllulu发布了新的文献求助10
7秒前
8秒前
Morch2021完成签到,获得积分20
9秒前
10秒前
10秒前
12秒前
吕大本事完成签到,获得积分10
13秒前
Serena发布了新的文献求助10
13秒前
14秒前
followZ完成签到,获得积分10
15秒前
rputation完成签到 ,获得积分10
15秒前
LHC完成签到,获得积分10
16秒前
今后应助new_vision采纳,获得10
16秒前
潘多拉完成签到 ,获得积分10
17秒前
17秒前
开心的向雁完成签到,获得积分10
18秒前
kk发布了新的文献求助10
18秒前
嘻嘻乙烯完成签到,获得积分10
19秒前
19秒前
李思超发布了新的文献求助220
19秒前
菜菜蔡儿发布了新的文献求助10
20秒前
生5clean完成签到,获得积分10
20秒前
yanting发布了新的文献求助20
22秒前
Messi发布了新的文献求助10
22秒前
23秒前
阔达水之完成签到,获得积分10
24秒前
郜翠绿完成签到,获得积分20
25秒前
25秒前
26秒前
26秒前
26秒前
生5clean发布了新的文献求助20
27秒前
高分求助中
Разработка метода ускоренного контроля качества электрохромных устройств 500
Mass producing individuality 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3820866
求助须知:如何正确求助?哪些是违规求助? 3363847
关于积分的说明 10425478
捐赠科研通 3082293
什么是DOI,文献DOI怎么找? 1695498
邀请新用户注册赠送积分活动 815144
科研通“疑难数据库(出版商)”最低求助积分说明 768982