脂质体
转染
小干扰RNA
化学
赫拉
生物物理学
分子生物学
体内
亚历山福禄
体外
荧光显微镜
RNA干扰
细胞毒性
二硫键
半胱氨酸
生物化学
荧光
核糖核酸
生物
基因
重组DNA
量子力学
物理
载体(分子生物学)
酶
生物技术
作者
Zongguang Tai,Xiaoyu Wang,Jing Tian,Yuan Gao,Lijuan Zhang,Chong Yao,Xin Wu,Wei Zhang,Quangang Zhu,Shen Gao
出处
期刊:Biomacromolecules
[American Chemical Society]
日期:2015-02-16
卷期号:16 (4): 1119-1130
被引量:56
摘要
RNA-based delivery system for cancer therapy remains a challenge. In this study, a stearyl-peptide (SHR) was synthesized using arginine, histidine, cysteine, and stearyl moieties. Further, the stearyl-peptides were cross-linked by disulfide bonds to obtain cross-linked polypeptides (SHRss) with different molecular weight (SHRss1, SHRss2, SHRss3, SHRss4). The SHRss could effectively condense small interfering RNA (siRNA) into polyplexes with a hydrodynamic size of 100-300 nm and zeta potential of 20-40 mV. Flow cytometry and confocal laser scanning microscope studies revealed high cellular uptake and rapid dissociation behavior of SHRss2/siRNA complexes. Long-lasting high concentration of siRNA in cytoplasm was observed even at 24 h after SHRss2/Cy3-siRNA transfection. Compared with SHR, the SHRss showed much improved siRNA interference efficiency targeting luciferase on Luc-Hela cells. Moreover, SHRss2 exhibited higher interference efficiency and slower decay rate on Luc-Hela cells than Lipofectamine 2000 and SHR. In addition, much weaker expression of red fluorescence protein was also observed on SHRss2/simCh-treated mCherry-HEK293 cells than Lipofectamine 2000 and SHR. The SHRss did not induce cytotoxicity at siRNA concentrations of 25-200 nM under transfection. The in vivo studies demonstrated the gene interference efficiency of SHRss2/siRNA complexes. Our studies indicated that the SHRss are promising and efficient nonviral vectors for siRNA delivery.
科研通智能强力驱动
Strongly Powered by AbleSci AI