A Systems Biology Study of Two Distinct Growth Phases of Saccharomyces cerevisiae Cultures

代谢组学 酿酒酵母 系统生物学 指数增长 计算生物学 酵母 代谢物 生物 生物化学 生物系统 生物信息学 物理 量子力学
作者
A.M. Martins,Diogo M. Camacho,Joel L. Shuman,Wei Sha,Pedro Mendes,Vladimir Shulaev
出处
期刊:Current Genomics [Bentham Science Publishers]
卷期号:5 (8): 649-663 被引量:41
标识
DOI:10.2174/1389202043348643
摘要

Saccharomyces cerevisiae cultures growing exponentially and after starvation are distinctly different, as shown by several studies at the physiological, biochemical, and morphological levels. One group of studies attempted to be mechanistic, characterizing a few molecules and interactions, while another focused on global observations but remained descriptive or at best phenomenological. Recent advances in large-scale molecular profiling technologies, theoretical, and computational biology, are making possible integrative studies of biological systems, where global observations are explained through computational models with solid theoretical bases. A case study of the systems biology approach applied to the characterization of bakers yeast cultures in exponential growth and post-diauxic phases is presented. Twenty cell cultures of S. cerevisiae were grown under similar environmental conditions. Samples from ten of these cultures were collected 11 hours after inoculation, while samples from the other ten were collected 4 days after inoculation. These samples were analyzed for their RNA and metabolite composition using Affymetrix chips and gas chromatography-mass spectrometry (GC-MS). The data were interpreted with statistical analyses and through the use of computer simulations of a kinetic model that was built by merging two independent models of glycolysis and glycerol biosynthesis. The simulation results agree with the exponential growth phase data, while no model is available for the post-diauxic phase. We discuss the need for expanding the number of kinetic models of S. cerevisiae, combining metabolism and genetic regulation, and covering all of its biochemistry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
辛勤的青雪完成签到,获得积分20
1秒前
烟花应助Jeff采纳,获得10
1秒前
2秒前
Diego发布了新的文献求助10
2秒前
Diego发布了新的文献求助10
3秒前
Diego发布了新的文献求助10
3秒前
3秒前
Jasper应助siyukou采纳,获得10
3秒前
SYLH应助deniroming采纳,获得10
3秒前
嘿嘿完成签到 ,获得积分10
3秒前
Diego发布了新的文献求助10
4秒前
Diego发布了新的文献求助10
4秒前
Diego发布了新的文献求助10
4秒前
Diego发布了新的文献求助10
4秒前
6秒前
独特的星星完成签到,获得积分20
7秒前
斯文败类应助牛牛牛采纳,获得10
8秒前
zhugexl发布了新的文献求助10
9秒前
10秒前
10秒前
一澜透完成签到,获得积分10
10秒前
送你一颗流星完成签到,获得积分10
10秒前
ycluuu823完成签到,获得积分10
12秒前
13秒前
14秒前
16秒前
小~杰发布了新的文献求助10
16秒前
杨易发布了新的文献求助20
18秒前
lianmeiliu发布了新的文献求助10
19秒前
完美世界应助糟糕的铁锤采纳,获得50
19秒前
xx完成签到,获得积分10
22秒前
22秒前
Annabelle完成签到,获得积分10
23秒前
25秒前
26秒前
26秒前
26秒前
hyw发布了新的文献求助10
27秒前
思源应助Katarina采纳,获得10
27秒前
27秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
《続天台宗全書・史伝1 天台大師伝注釈類》 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842873
求助须知:如何正确求助?哪些是违规求助? 3384852
关于积分的说明 10537856
捐赠科研通 3105474
什么是DOI,文献DOI怎么找? 1710311
邀请新用户注册赠送积分活动 823582
科研通“疑难数据库(出版商)”最低求助积分说明 774149