多级模型
计算机科学
缺少数据
心理学
随机效应模型
纵向数据
统计模型
广义线性混合模型
数据科学
数据挖掘
机器学习
荟萃分析
医学
内科学
标识
DOI:10.1037/0893-3200.19.1.98
摘要
Couple and family treatment data present particular challenges to statistical analyses. Partners and family members tend to be more similar to one another than to other individuals, which raises interesting possibilities in the data analysis but also causes significant problems with classical, statistical methods. The present article presents multilevel models (also called hierarchical linear models, mixed-effects models, or random coefficient models) as a flexible analytic approach to couple and family longitudinal data. The article reviews basic properties of multilevel models but focuses primarily on 3 important extensions: missing data, power and sample size, and alternative representations of couple data. Information is presented as a tutorial, with a Web appendix providing datasets with SPSS and R code to reproduce the examples.
科研通智能强力驱动
Strongly Powered by AbleSci AI