Enhancement of the Multiplexing Capacity and Measurement Accuracy of FBG Sensor System Using IWDM Technique and Deep Learning Algorithm

多路复用 无线传感器网络 光纤布拉格光栅 光纤传感器 计算机科学 算法 生存能力 电子工程 工程类 光纤 电信 计算机网络
作者
Yibeltal Chanie Manie,Peng‐Chun Peng,Run‐Kai Shiu,Yuan-Ta Hsu,Ya-Yu Chen,Guan-Ming Shao,Justin Chiu
出处
期刊:Journal of Lightwave Technology [Institute of Electrical and Electronics Engineers]
卷期号:38 (6): 1589-1603 被引量:43
标识
DOI:10.1109/jlt.2020.2971240
摘要

In this article, we are the first to propose deep learning algorithms for intensity wavelength division multiplexing (IWDM)-based self-healing fiber Bragg grating (FBG) sensor network. A deep learning algorithm is proposed to improve the accuracy of measuring the sensing signal of the sensor system. Furthermore, to increase the total number of FBG sensors multiplexed in the sensor network for multipoint measurements, a multiplexing technique called IWDM is proposed. The proposed IWDM-based ring structure FBG sensor network can also have a self-healing purpose to improve the sensor system's reliability and survivability. However, IWDM has unmeasurable gap or crosstalk problems when the number of FBG sensors increases, which causes high sensing signal measurement errors. To solve this problem, a gated recurrent unit (GRU) deep learning algorithm is proposed and experimentally demonstrated. To prove the sensing signal measurement performance of our proposed algorithm, we test the well-trained GRU model using two cases. The first case is when the spectra of FBGs are overlapped as well as the minimum intensity difference between FBGs is 10%, and the second case is when the spectra of FBGs are overlapped as well as the minimum intensity difference between FBGs is 3% which is a very small intensity difference. From the experimental results, the well-trained GRU algorithm achieves high strain sensing signal measurement performance in both cases compared to other algorithms. Therefore, the proposed IWDM based FBG sensor system using deep learning algorithm enhances the multiplexing capacity and survivability of the sensor system, reduces the computational time, and improves strain sensing signal measurement accuracy of FBGs even when FBGs has very small intensity difference and overlap problem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助大意的初雪采纳,获得10
1秒前
1秒前
xiaosui完成签到 ,获得积分10
2秒前
hukeyan完成签到,获得积分10
2秒前
李爱国应助Shelley采纳,获得10
3秒前
科研通AI5应助热沙来提采纳,获得10
3秒前
WFLLL完成签到,获得积分10
6秒前
隐形曼青应助科研小菜鸟i采纳,获得10
7秒前
10秒前
燃之一手完成签到 ,获得积分10
10秒前
xdd完成签到 ,获得积分10
10秒前
嘻嘻完成签到,获得积分10
11秒前
dudu完成签到 ,获得积分10
13秒前
Muller完成签到,获得积分10
13秒前
GXLong完成签到,获得积分10
13秒前
16秒前
诗亭发布了新的文献求助10
16秒前
16秒前
17秒前
17秒前
LMY完成签到 ,获得积分10
18秒前
LNE发布了新的文献求助10
21秒前
科研小白发布了新的文献求助10
21秒前
Shelley发布了新的文献求助10
23秒前
郝富完成签到,获得积分10
23秒前
枫叶的脚步完成签到,获得积分10
23秒前
25秒前
小先生完成签到,获得积分10
26秒前
28秒前
天天快乐应助称心寒松采纳,获得10
29秒前
lily336699发布了新的文献求助10
29秒前
ZHH发布了新的文献求助10
29秒前
vv发布了新的文献求助20
31秒前
北海完成签到 ,获得积分10
31秒前
31秒前
32秒前
vespa完成签到,获得积分10
32秒前
一二三发布了新的文献求助10
33秒前
LNE完成签到,获得积分10
33秒前
dddd发布了新的文献求助10
35秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781132
求助须知:如何正确求助?哪些是违规求助? 3326545
关于积分的说明 10227747
捐赠科研通 3041707
什么是DOI,文献DOI怎么找? 1669585
邀请新用户注册赠送积分活动 799100
科研通“疑难数据库(出版商)”最低求助积分说明 758745