Development of robust artificial neural networks for prediction of 5-year survival in bladder cancer

接收机工作特性 医学 膀胱癌 比例危险模型 人工神经网络 机器学习 人工智能 阶段(地层学) 生存分析 流行病学 癌症 预测建模 肿瘤科 内科学 计算机科学 生物 古生物学
作者
Hriday P. Bhambhvani,Alvaro Zamora,Eugene Shkolyar,Kris Prado,Daniel S. Greenberg,Alex M. Kasman,Joseph C. Liao,Sumit Shah,Sandy Srinivas,Eila C. Skinner,Jay B. Shah
出处
期刊:Urologic Oncology-seminars and Original Investigations [Elsevier]
卷期号:39 (3): 193.e7-193.e12 被引量:22
标识
DOI:10.1016/j.urolonc.2020.05.009
摘要

When exploring survival outcomes for patients with bladder cancer, most studies rely on conventional statistical methods such as proportional hazards models. Given the successful application of machine learning to handle big data in many disciplines outside of medicine, we sought to determine if machine learning could be used to improve our ability to predict survival in bladder cancer patients. We compare the performance of artificial neural networks (ANN), a type of machine learning algorithm, with that of multivariable Cox proportional hazards (CPH) models in the prediction of 5-year disease-specific survival (DSS) and overall survival (OS) in patients with bladder cancer. The National Cancer Institute's Surveillance, Epidemiology, and End Results (SEER) 18 program database was queried to identify adult patients with bladder cancer diagnosed between 1995 and 2010, yielding 161,227 patients who met our inclusion criteria. ANNs were trained and tested on an 80/20 split of the dataset. Multivariable CPH models were developed in parallel. Variables used for prediction included age, sex, race, grade, SEER stage, tumor size, lymph node involvement, degree of extension, and surgery received. The primary outcomes were 5-year DSS and 5-year OS. Receiver operating characteristic curve analysis was conducted, and ANN models were tested for calibration. The area under the curve for the ANN models was 0.81 for the OS model and 0.80 for the DSS model. Area under the curve for the CPH models was 0.70 for OS and 0.81 for DSS. The ANN OS model achieved a calibration slope of 1.03 and a calibration intercept of −0.04, while the ANN DSS model achieved a calibration slope of 0.99 and a calibration intercept of −0.04. Machine learning algorithms can improve our ability to predict bladder cancer prognosis. Compared to CPH models, ANNs predicted OS more accurately and DSS with similar accuracy. Given the inherent limitations of administrative datasets, machine learning may allow for optimal interpretation of the complex data they contain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dzc完成签到,获得积分10
刚刚
YYYang完成签到,获得积分10
刚刚
是漏漏呀完成签到,获得积分10
刚刚
JIECHENG完成签到 ,获得积分10
刚刚
Julie发布了新的文献求助10
刚刚
江海客完成签到,获得积分10
1秒前
帕尼尼发布了新的文献求助10
1秒前
2秒前
ho应助鲨鱼娃采纳,获得30
2秒前
2秒前
2秒前
回复对方发布了新的文献求助10
2秒前
李健应助杨老板采纳,获得10
2秒前
Mcintosh完成签到 ,获得积分10
2秒前
fmh发布了新的文献求助10
3秒前
3秒前
tdtk发布了新的文献求助10
3秒前
LiuSD发布了新的文献求助10
3秒前
syl完成签到 ,获得积分10
3秒前
奋斗的凡发布了新的文献求助10
4秒前
5秒前
5秒前
ixueyi完成签到,获得积分10
5秒前
受伤问凝完成签到 ,获得积分10
5秒前
风中冰香应助舒适的半芹采纳,获得10
6秒前
7秒前
7秒前
qaq完成签到,获得积分10
7秒前
失眠霸完成签到,获得积分10
7秒前
懒癌晚期发布了新的文献求助10
8秒前
机灵语雪完成签到,获得积分10
8秒前
dzc发布了新的文献求助10
8秒前
8秒前
8秒前
bai发布了新的文献求助10
8秒前
8秒前
英俊的铭应助回复对方采纳,获得10
9秒前
在意风发布了新的文献求助10
9秒前
葛根完成签到,获得积分20
11秒前
vivi发布了新的文献求助10
12秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Problem based learning 1000
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5388804
求助须知:如何正确求助?哪些是违规求助? 4511068
关于积分的说明 14037587
捐赠科研通 4421835
什么是DOI,文献DOI怎么找? 2428954
邀请新用户注册赠送积分活动 1421511
关于科研通互助平台的介绍 1400661