Weakly Supervised Fine-grained Image Classification via Correlation-guided Discriminative Learning

判别式 人工智能 计算机科学 模式识别(心理学) 背景(考古学) 相关性 特征向量 代表(政治) 机器学习 图像(数学) 特征(语言学) 特征学习 数学 地理 政治 几何学 哲学 语言学 考古 法学 政治学
作者
Zhihui Wang,Shijie Wang,Pengbo Zhang,Haojie Li,Wei Zhong,Jianjun Li
标识
DOI:10.1145/3343031.3350976
摘要

Weakly supervised fine-grained image classification (WFGIC) aims at learning to recognize hundreds of subcategories in each basic-level category with only image level labels available. It is extremely challenging and existing methods mainly focus on the discriminative semantic parts or regions localization as the key differences among different subcategories are subtle and local. However, they localize these regions independently while neglecting the fact that regions are mutually correlated and region groups can be more discriminative. Meanwhile, most current work tends to derive features directly from the output of CNN and rarely considers the correlation within the feature vector. To address these issues, we propose an end-to-end Correlation-guided Discriminative Learning (CDL) model to fully mine and exploit the discriminative potentials of correlations for WFGIC globally and locally. From the global perspective, a discriminative region grouping (DRG) sub-network is proposed which first establishes correlation between regions and then enhances each region by weighted aggregating all the correlation from other regions to it. By this means each region's representation encodes the global image-level context and thus is more robust; meanwhile, through learning the correlation between discriminative regions, the network is guided to implicitly discover the discriminative region groups which are more powerful for WFGIC. From the local perspective, a discriminative feature strengthening sub-network (DFS) is proposed to mine and learn the internal spatial correlation among elements of each patch's feature vector, to improve its discriminative power locally by jointly emphasizes informative elements while suppresses the useless ones. Extensive experiments demonstrate the effectiveness of proposed DRG and DFS sub-networks, and show that the CDL model achieves state-of-the-art performance both in accuracy and efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lvshiwen发布了新的社区帖子
2秒前
3秒前
爱笑子默完成签到,获得积分10
4秒前
科研包完成签到,获得积分10
4秒前
5秒前
TIX完成签到 ,获得积分10
6秒前
凝心完成签到,获得积分10
8秒前
研友_8YK7Pn发布了新的文献求助10
10秒前
纯情的远山完成签到,获得积分10
10秒前
Steven发布了新的文献求助10
10秒前
Leo发布了新的文献求助10
10秒前
搜集达人应助冷酷太清采纳,获得10
11秒前
hecarli完成签到,获得积分0
13秒前
怎么会睡不醒完成签到 ,获得积分10
15秒前
15秒前
Zhangtao完成签到,获得积分10
15秒前
tyj完成签到,获得积分10
16秒前
16秒前
学习鱼完成签到,获得积分10
17秒前
Leo完成签到,获得积分10
18秒前
standingo完成签到,获得积分10
18秒前
不爱吃banana的猴子完成签到,获得积分10
19秒前
复杂念梦完成签到,获得积分10
20秒前
圈圈应助落后书竹采纳,获得10
21秒前
111111111发布了新的文献求助10
23秒前
23秒前
wljwljwlj完成签到 ,获得积分10
24秒前
lf-leo完成签到,获得积分10
25秒前
南宫书瑶完成签到,获得积分10
25秒前
独特的易形完成签到,获得积分10
25秒前
磊枝发布了新的文献求助10
26秒前
一个完成签到 ,获得积分10
26秒前
等待的幼晴完成签到,获得积分10
27秒前
lulu完成签到,获得积分10
27秒前
书临完成签到 ,获得积分10
27秒前
27秒前
深情安青应助科研通管家采纳,获得10
28秒前
冰魂应助科研通管家采纳,获得60
28秒前
隐形曼青应助科研通管家采纳,获得10
28秒前
搜集达人应助科研通管家采纳,获得10
28秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779404
求助须知:如何正确求助?哪些是违规求助? 3324954
关于积分的说明 10220585
捐赠科研通 3040099
什么是DOI,文献DOI怎么找? 1668560
邀请新用户注册赠送积分活动 798721
科研通“疑难数据库(出版商)”最低求助积分说明 758522