已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Prediction of the surface quality of friction stir welds by the analysis of process data using Artificial Neural Networks

卷积神经网络 焊接 搅拌摩擦焊 人工神经网络 转速 机械工程 过程(计算) 曲面(拓扑) 材料科学 人工智能 计算机科学 结构工程 工程类 数学 几何学 操作系统
作者
Roman Hartl,B Praehofer,Michael F. Zaeh
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications [SAGE]
卷期号:234 (5): 732-751 被引量:30
标识
DOI:10.1177/1464420719899685
摘要

Friction stir welding is an advanced joining technology that is particularly suitable for aluminum alloys. Various studies have shown that welding quality depends significantly on the welding speed and the rotational speed of the tool. It is frequently possible to detect an unsuitable setting of these parameters by examining the resulting surface defects, such as increased flash formation or surface galling. In this work, Artificial Neural Networks were used to analyze process data in friction stir welding and predict the resulting quality of the weld surface. For this purpose, nine different variables were recorded during friction stir welding of EN AW-6082 T6 sheets: the forces and accelerations in three spatial directions, the spindle torque, and temperatures at the tool shoulder and tool probe. In Case 1, the welds were assigned to the classes good and defective on the basis of a human visual inspection of the weld surface. In Case 2, the welds were categorized into the two classes on the basis of a surface topography analysis. Subsequently, three different major Artificial Neural Network architectures were tested for their ability to predict the surface quality: Feed Forward Fully Connected Neural Networks, Recurrent Neural Networks and Convolutional Neural Networks. The highest classification accuracy was achieved when Convolutional Neural Networks were used. Thus, the evaluation of the force signal transverse to the welding direction yielded the highest accuracy of 99.1% for the prediction of the result of the human visual inspection. The result achieved for the prediction of the topography analysis was an accuracy of 87.4% when the spindle torque was evaluated. Using all nine different process variables to predict the topography analysis, the accuracy could be improved slightly to 88.0%. The sampling rate of the spindle torque was varied between 40 Hz and 9600 Hz and no significant influence was determined. The findings show that Convolutional Neural Networks are well suited for the interpretation of friction stir welding process data and can be used to predict the resulting surface quality. In future work, the results are to be used to develop a parameter optimization method for friction stir welding.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xupeng发布了新的文献求助20
刚刚
111关闭了111文献求助
3秒前
3秒前
牧云醉风完成签到,获得积分20
5秒前
肉燕发布了新的文献求助10
5秒前
8秒前
橙子完成签到,获得积分10
8秒前
10秒前
小李完成签到 ,获得积分10
12秒前
清新的初夏完成签到,获得积分10
15秒前
英勇的雪碧完成签到 ,获得积分10
15秒前
susan发布了新的文献求助10
15秒前
111关闭了111文献求助
16秒前
小太阳完成签到,获得积分10
16秒前
yuyu完成签到,获得积分10
16秒前
CipherSage应助Leekr采纳,获得10
17秒前
汉堡包应助聪明的破茧采纳,获得10
18秒前
科研通AI2S应助啦啦啦采纳,获得10
20秒前
WYXXXX发布了新的文献求助20
21秒前
山茶完成签到 ,获得积分10
22秒前
放饭完成签到 ,获得积分10
23秒前
肉燕完成签到,获得积分10
23秒前
勤奋天真完成签到 ,获得积分10
24秒前
24秒前
量子星尘发布了新的文献求助10
24秒前
111关闭了111文献求助
28秒前
可靠的毛衣完成签到 ,获得积分10
29秒前
30秒前
mm完成签到,获得积分10
30秒前
弥漫的橘完成签到 ,获得积分10
33秒前
WILD发布了新的文献求助10
34秒前
dwgwushan完成签到,获得积分10
34秒前
doudou完成签到 ,获得积分10
36秒前
静水流深完成签到 ,获得积分10
38秒前
卫化蛹完成签到,获得积分10
39秒前
Youngman完成签到,获得积分10
40秒前
QAQ完成签到 ,获得积分10
41秒前
门牙完成签到,获得积分10
41秒前
WYXXXX完成签到,获得积分10
43秒前
可爱的函函应助Da You采纳,获得10
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5680781
求助须知:如何正确求助?哪些是违规求助? 5001897
关于积分的说明 15174094
捐赠科研通 4840636
什么是DOI,文献DOI怎么找? 2594249
邀请新用户注册赠送积分活动 1547310
关于科研通互助平台的介绍 1505282