Prediction of the surface quality of friction stir welds by the analysis of process data using Artificial Neural Networks

卷积神经网络 焊接 搅拌摩擦焊 人工神经网络 转速 机械工程 过程(计算) 曲面(拓扑) 材料科学 人工智能 计算机科学 结构工程 工程类 数学 几何学 操作系统
作者
Roman Hartl,B Praehofer,Michael F. Zaeh
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications [SAGE Publishing]
卷期号:234 (5): 732-751 被引量:30
标识
DOI:10.1177/1464420719899685
摘要

Friction stir welding is an advanced joining technology that is particularly suitable for aluminum alloys. Various studies have shown that welding quality depends significantly on the welding speed and the rotational speed of the tool. It is frequently possible to detect an unsuitable setting of these parameters by examining the resulting surface defects, such as increased flash formation or surface galling. In this work, Artificial Neural Networks were used to analyze process data in friction stir welding and predict the resulting quality of the weld surface. For this purpose, nine different variables were recorded during friction stir welding of EN AW-6082 T6 sheets: the forces and accelerations in three spatial directions, the spindle torque, and temperatures at the tool shoulder and tool probe. In Case 1, the welds were assigned to the classes good and defective on the basis of a human visual inspection of the weld surface. In Case 2, the welds were categorized into the two classes on the basis of a surface topography analysis. Subsequently, three different major Artificial Neural Network architectures were tested for their ability to predict the surface quality: Feed Forward Fully Connected Neural Networks, Recurrent Neural Networks and Convolutional Neural Networks. The highest classification accuracy was achieved when Convolutional Neural Networks were used. Thus, the evaluation of the force signal transverse to the welding direction yielded the highest accuracy of 99.1% for the prediction of the result of the human visual inspection. The result achieved for the prediction of the topography analysis was an accuracy of 87.4% when the spindle torque was evaluated. Using all nine different process variables to predict the topography analysis, the accuracy could be improved slightly to 88.0%. The sampling rate of the spindle torque was varied between 40 Hz and 9600 Hz and no significant influence was determined. The findings show that Convolutional Neural Networks are well suited for the interpretation of friction stir welding process data and can be used to predict the resulting surface quality. In future work, the results are to be used to develop a parameter optimization method for friction stir welding.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
伶俐的千柔完成签到,获得积分10
刚刚
飞羽发布了新的文献求助10
刚刚
王三歲完成签到,获得积分10
刚刚
蓝天黄土完成签到,获得积分10
1秒前
Orange应助77在七月采纳,获得10
1秒前
shelly完成签到,获得积分10
1秒前
青秋鱼罐头完成签到,获得积分10
2秒前
2秒前
2秒前
科研通AI5应助小松鼠采纳,获得10
2秒前
金金完成签到,获得积分10
3秒前
华仔应助维基百科采纳,获得10
3秒前
缓慢醉卉发布了新的文献求助10
3秒前
dabai完成签到,获得积分10
5秒前
mark发布了新的文献求助10
5秒前
hyekyo发布了新的文献求助10
5秒前
隐形的秋灵完成签到,获得积分10
6秒前
zuoyanwin完成签到,获得积分10
6秒前
纸船完成签到,获得积分10
7秒前
星光完成签到,获得积分10
7秒前
西瓜完成签到,获得积分10
7秒前
谦让香菱完成签到,获得积分10
8秒前
金金发布了新的文献求助10
8秒前
YIBO完成签到,获得积分20
9秒前
monoklatt完成签到,获得积分10
9秒前
慕青应助2549360318采纳,获得10
10秒前
10秒前
小五屁孩儿完成签到,获得积分10
10秒前
小施发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
10秒前
不以完成签到,获得积分10
11秒前
自由的沛山完成签到,获得积分10
11秒前
无极微光应助鲜艳的绣连采纳,获得20
12秒前
zhengke924完成签到,获得积分10
12秒前
王大D完成签到,获得积分10
13秒前
忧虑的电话完成签到,获得积分10
13秒前
13秒前
14秒前
含笑打针完成签到,获得积分10
14秒前
山火完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5067407
求助须知:如何正确求助?哪些是违规求助? 4289187
关于积分的说明 13362471
捐赠科研通 4108690
什么是DOI,文献DOI怎么找? 2249847
邀请新用户注册赠送积分活动 1255305
关于科研通互助平台的介绍 1187828