Estimating ammonia emissions from cropland in China based on the establishment of agro-region-specific models

环境科学 空间变异性 肥料 降水 挥发 大气科学 农学 土壤科学 气象学 地理 数学 统计 生物 物理 地质学 核物理学
作者
Hua Wu,Yunpeng Liu,Zihao Xie,Jianfei Sun,Pete Smith,Kun Cheng,Pinhao Fan,Qian Ye,Genxing Pan
出处
期刊:Agricultural and Forest Meteorology [Elsevier BV]
卷期号:303: 108373-108373 被引量:13
标识
DOI:10.1016/j.agrformet.2021.108373
摘要

Estimating ammonia (NH3) volatilization from cropland can identify potential environmental risks and is also important for mitigating NH3 loss, since cropland is the major anthropogenic source of NH3. Reducing uncertainties around NH3 volatilization estimates is a key need. In this study, both a single national model and agro-region-specific models were developed to embody the variation of NH3 volatilization associated with environmental attributes and management practices for cropland in various agro-regions of China. A database with 951 field measurements across China was established to develop and evaluate the model, in which 75% of the measurements were used for model fitting and 25% were used for evaluation. The agro-region specific model had a better performance than the single national scale model, and the agro-region-specific model could successfully simulate NH3 emissions with R2 values of 0.41–0.93 as a function of crop type, N fertilizer type and rate, timing of fertilization, soil pH, clay content, bulk density, precipitation, air temperature, and soil total nitrogen content. Inputting high-resolution spatial data into the model, the NH3 emissions from China's cropland were estimated to be 4.31 Tg NH3N in the year 2015 with a 95% confidence interval of 3.64–5.64 Tg NH3N, of which paddy rice cultivation accounted for 44%, and maize and wheat cultivation contributed 20% and 16%, respectively. Notable spatial variability was also found in NH3 emissions from China's cropland due to regional differences in climate, soil and management patterns. This study showed that the accuracy of estimation of farmland NH3 emissions can be improved by taking meteorological, soil and management variables into account and inputting high-spatial-resolution data into the modeling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
情怀应助章鱼小雷子采纳,获得10
1秒前
甄姬唔恨赢完成签到,获得积分10
1秒前
明明发布了新的文献求助10
2秒前
单薄靖儿完成签到,获得积分10
2秒前
2秒前
4秒前
震动的曲奇完成签到,获得积分10
4秒前
魁梧的初兰完成签到,获得积分10
4秒前
karL完成签到,获得积分10
5秒前
喜洋洋完成签到 ,获得积分10
6秒前
太叔明辉完成签到,获得积分10
7秒前
从容前行完成签到,获得积分10
7秒前
优秀凡波发布了新的文献求助10
7秒前
shangbohan发布了新的文献求助20
9秒前
9秒前
小卡发布了新的文献求助10
10秒前
11秒前
11秒前
眼睛大的从雪完成签到,获得积分10
11秒前
钮卿完成签到,获得积分10
14秒前
科研通AI2S应助云湮采纳,获得10
14秒前
和颂发布了新的文献求助10
15秒前
皮皮发布了新的文献求助30
16秒前
研友_nqv5WZ完成签到 ,获得积分10
17秒前
小二郎应助drwang采纳,获得10
17秒前
乐乐应助drwang采纳,获得30
17秒前
18秒前
zwy109完成签到 ,获得积分10
18秒前
yu完成签到 ,获得积分10
19秒前
慕青应助郭海涛采纳,获得10
21秒前
炙热若云完成签到,获得积分10
21秒前
周芷卉完成签到 ,获得积分10
22秒前
blance发布了新的文献求助30
23秒前
橘子完成签到,获得积分10
24秒前
Desole完成签到,获得积分10
24秒前
25秒前
自由的风完成签到,获得积分10
26秒前
26秒前
科研通AI5应助央央采纳,获得10
26秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
非光滑分析与控制理论 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Routledge Handbook of Language and Intercultural Communication 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3826701
求助须知:如何正确求助?哪些是违规求助? 3369009
关于积分的说明 10453658
捐赠科研通 3088582
什么是DOI,文献DOI怎么找? 1699218
邀请新用户注册赠送积分活动 817281
科研通“疑难数据库(出版商)”最低求助积分说明 770148