亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Model-Based Deep Learning

计算机科学 深度学习 人工智能 利用 机器学习 领域(数学分析) 交叉口(航空) 领域知识 数学 计算机安全 工程类 数学分析 航空航天工程
作者
Nir Shlezinger,Jay Whang,Yonina C. Eldar,Alexandros G. Dimakis
出处
期刊:Proceedings of the IEEE [Institute of Electrical and Electronics Engineers]
卷期号:111 (5): 465-499 被引量:146
标识
DOI:10.1109/jproc.2023.3247480
摘要

Signal processing, communications, and control have traditionally relied on classical statistical modeling techniques. Such model-based methods utilize mathematical formulations that represent the underlying physics, prior information, and additional domain knowledge. Simple classical models are useful but sensitive to inaccuracies and may lead to poor performance when real systems display complex or dynamic behavior. On the other hand, purely data-driven approaches that are model-agnostic are becoming increasingly popular as datasets become abundant and the power of modern deep learning pipelines increases. Deep neural networks (DNNs) use generic architectures that learn to operate from data and demonstrate excellent performance, especially for supervised problems. However, DNNs typically require massive amounts of data and immense computational resources, limiting their applicability for some scenarios. In this article, we present the leading approaches for studying and designing model-based deep learning systems. These are methods that combine principled mathematical models with data-driven systems to benefit from the advantages of both approaches. Such model-based deep learning methods exploit both partial domain knowledge, via mathematical structures designed for specific problems, and learning from limited data. Among the applications detailed in our examples for model-based deep learning are compressed sensing, digital communications, and tracking in state-space models. Our aim is to facilitate the design and study of future systems at the intersection of signal processing and machine learning that incorporate the advantages of both domains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
6秒前
优美香露发布了新的文献求助30
12秒前
19秒前
24秒前
优美香露发布了新的文献求助30
24秒前
25秒前
优美香露发布了新的文献求助30
38秒前
45秒前
51秒前
量子星尘发布了新的文献求助10
59秒前
1分钟前
D1fficulty完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
RASH完成签到,获得积分10
1分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
共享精神应助科研通管家采纳,获得10
3分钟前
Ava应助科研通管家采纳,获得10
3分钟前
3分钟前
一一发布了新的文献求助10
3分钟前
一一完成签到,获得积分10
3分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
4分钟前
4分钟前
sherrt发布了新的文献求助10
4分钟前
sherrt完成签到,获得积分10
4分钟前
Setlla完成签到 ,获得积分10
5分钟前
犹豫的夏旋完成签到 ,获得积分10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
5分钟前
6分钟前
量子星尘发布了新的文献求助10
6分钟前
高分求助中
Semantics for Latin: An Introduction 1155
Genomic signature of non-random mating in human complex traits 1000
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
Multimodal injustices: Speech acts, gender bias, and speaker’s status 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4105619
求助须知:如何正确求助?哪些是违规求助? 3643521
关于积分的说明 11542626
捐赠科研通 3350870
什么是DOI,文献DOI怎么找? 1841123
邀请新用户注册赠送积分活动 907894
科研通“疑难数据库(出版商)”最低求助积分说明 825053