Model-Based Deep Learning

计算机科学 深度学习 人工智能 利用 机器学习 领域(数学分析) 交叉口(航空) 领域知识 数学 计算机安全 工程类 数学分析 航空航天工程
作者
Nir Shlezinger,Jay Whang,Yonina C. Eldar,Alexandros G. Dimakis
出处
期刊:Proceedings of the IEEE [Institute of Electrical and Electronics Engineers]
卷期号:111 (5): 465-499 被引量:146
标识
DOI:10.1109/jproc.2023.3247480
摘要

Signal processing, communications, and control have traditionally relied on classical statistical modeling techniques. Such model-based methods utilize mathematical formulations that represent the underlying physics, prior information, and additional domain knowledge. Simple classical models are useful but sensitive to inaccuracies and may lead to poor performance when real systems display complex or dynamic behavior. On the other hand, purely data-driven approaches that are model-agnostic are becoming increasingly popular as datasets become abundant and the power of modern deep learning pipelines increases. Deep neural networks (DNNs) use generic architectures that learn to operate from data and demonstrate excellent performance, especially for supervised problems. However, DNNs typically require massive amounts of data and immense computational resources, limiting their applicability for some scenarios. In this article, we present the leading approaches for studying and designing model-based deep learning systems. These are methods that combine principled mathematical models with data-driven systems to benefit from the advantages of both approaches. Such model-based deep learning methods exploit both partial domain knowledge, via mathematical structures designed for specific problems, and learning from limited data. Among the applications detailed in our examples for model-based deep learning are compressed sensing, digital communications, and tracking in state-space models. Our aim is to facilitate the design and study of future systems at the intersection of signal processing and machine learning that incorporate the advantages of both domains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
中国大陆发布了新的文献求助40
1秒前
张涛完成签到,获得积分10
1秒前
1秒前
Criminology34应助斯文冰露采纳,获得10
2秒前
Hannah完成签到,获得积分10
2秒前
田彬杰完成签到,获得积分10
3秒前
芝芝完成签到,获得积分10
3秒前
舒适行天完成签到,获得积分10
3秒前
儒雅的若翠完成签到,获得积分10
3秒前
阿喵完成签到,获得积分10
3秒前
三三完成签到,获得积分10
3秒前
llk完成签到,获得积分10
4秒前
XyraZen完成签到,获得积分10
4秒前
研友_VZG7GZ应助芝芝椰奶冻采纳,获得10
4秒前
星河完成签到,获得积分10
4秒前
jbg完成签到 ,获得积分10
4秒前
5秒前
陶醉难胜完成签到,获得积分10
5秒前
5秒前
5秒前
Sherry完成签到,获得积分10
6秒前
HCT完成签到,获得积分10
6秒前
7秒前
咿呀咿呀哟完成签到,获得积分0
7秒前
成就的南霜完成签到,获得积分10
8秒前
大力的乐曲完成签到,获得积分10
8秒前
清如完成签到 ,获得积分20
8秒前
8秒前
一期一完成签到,获得积分10
9秒前
风清扬发布了新的文献求助10
9秒前
RR完成签到,获得积分10
9秒前
略略略完成签到,获得积分10
9秒前
11秒前
77发布了新的文献求助10
11秒前
背后半凡发布了新的文献求助10
11秒前
科研通AI6应助AAA采纳,获得10
12秒前
李小牛完成签到,获得积分10
12秒前
here完成签到 ,获得积分10
12秒前
kingripple完成签到,获得积分10
13秒前
xxx完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5247009
求助须知:如何正确求助?哪些是违规求助? 4411941
关于积分的说明 13730992
捐赠科研通 4283002
什么是DOI,文献DOI怎么找? 2350081
邀请新用户注册赠送积分活动 1347033
关于科研通互助平台的介绍 1306626