Development and validation of a diagnostic model for migraine without aura in inpatients

接收机工作特性 医学 逻辑回归 列线图 光环 偏头痛 背景(考古学) 曲线下面积 内科学 生物 古生物学
作者
Zhuhong Chen,Yang Guan,Chi Zhang,Dan Su,Yuting Li,Yu‐Xuan Shang,Weidong Zhang,Wen Wang
出处
期刊:Frontiers in Neurology [Frontiers Media SA]
卷期号:16: 1511252-1511252
标识
DOI:10.3389/fneur.2025.1511252
摘要

Objectives This study aimed to develop and validate a robust predictive model for accurately identifying migraine without aura (MWoA) individuals from migraine patients. Methods We recruited 637 migraine patients, randomizing them into training and validation cohorts. Participant’s medical data were collected such as demographic data (age, gender, self-reported headache characteristics) and clinical details including symptoms, triggers, and comorbidities. The model stability, which was developed using multivariable logistic regression, was tested by the internal validation cohort. Model efficacy was evaluated using the area under the receiver operating characteristic curve (AUC), alongside with nomogram, calibration curve, and decision curve analysis (DCA). Results The study included 477 females (average age 46.62 ± 15.64) and 160 males (average age 39.78 ± 19.53). A total of 397 individuals met the criteria for MWoA. Key predictors in the regression model included patent foramen ovale (PFO) ( OR = 2.30, p = 0.01), blurred vision ( OR = 0.40, p = 0.001), dizziness ( OR = 0.16, p < 0.01), and anxiety/depression ( OR = 0.41, p = 0.02). Common symptoms like nausea ( OR = 0.79, p = 0.43) and vomiting ( OR = 0.64, p = 0.17) were not statistically significant predictors for MWoA. The AUC values were 79.1% and 82.8% in the training and validation cohorts, respectively, with good calibration in both. Conclusion The predictive model developed and validated in this study demonstrates significant efficacy in identifying MWoA. Our findings highlight PFO as a potential key risk factor, underscoring its importance for early prevention, screening, and diagnosis of MWoA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
金金金完成签到,获得积分10
1秒前
小蘑菇应助KIQING采纳,获得10
1秒前
qing完成签到 ,获得积分10
1秒前
2秒前
舒心的跳跳糖完成签到,获得积分10
2秒前
核桃发布了新的文献求助10
2秒前
杨佳完成签到,获得积分10
3秒前
小马甲应助Meteor采纳,获得10
3秒前
3秒前
3秒前
长安完成签到,获得积分10
3秒前
4秒前
4秒前
拉不不完成签到,获得积分10
5秒前
6秒前
Owen应助优雅枫叶采纳,获得10
6秒前
白紫莹发布了新的文献求助10
6秒前
6秒前
6秒前
七厘米完成签到,获得积分10
8秒前
8秒前
浮游应助轻松盼雁采纳,获得10
9秒前
脑洞疼应助小匹夫采纳,获得10
9秒前
wqy完成签到 ,获得积分10
9秒前
鲨鱼辣椒完成签到,获得积分10
9秒前
皮代谷发布了新的文献求助10
10秒前
10秒前
核桃发布了新的文献求助10
10秒前
任泉如完成签到 ,获得积分10
11秒前
11秒前
13秒前
小用一阵发布了新的文献求助10
13秒前
叶子完成签到 ,获得积分10
14秒前
量子星尘发布了新的文献求助10
14秒前
15秒前
不夜侯完成签到,获得积分10
15秒前
15秒前
spc68应助Rubywang采纳,获得10
15秒前
桐桐应助白紫莹采纳,获得10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629991
求助须知:如何正确求助?哪些是违规求助? 4721324
关于积分的说明 14972153
捐赠科研通 4788008
什么是DOI,文献DOI怎么找? 2556688
邀请新用户注册赠送积分活动 1517740
关于科研通互助平台的介绍 1478342