亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Electrocardiogram-based machine learning for risk stratification of patients with suspected acute coronary syndrome

医学 四分位间距 胸痛 急性冠脉综合征 内科学 队列 弗雷明翰风险评分 死亡率 优势比 机器学习 心肌梗塞 疾病 计算机科学
作者
Zeineb Bouzid,Ervin Sejdić,Christian Martin‐Gill,Ziad Faramand,Stephanie Frisch,Mohammad Alrawashdeh,Stephanie Helman,Tanmay Gokhale,Nathan T. Riek,Karina Kraevsky-Phillips,Richard E. Gregg,Susan M. Sereika,Gilles Clermont,Murat Akçakaya,Jessica K. Zègre‐Hemsey,Samir Saba,Clifton W. Callaway,Salah S. Al‐Zaiti
出处
期刊:European Heart Journal [Oxford University Press]
卷期号:46 (10): 943-954 被引量:8
标识
DOI:10.1093/eurheartj/ehae880
摘要

Abstract Background and Aims The importance of risk stratification in patients with chest pain extends beyond diagnosis and immediate treatment. This study sought to evaluate the prognostic value of electrocardiogram feature-based machine learning models to risk-stratify all-cause mortality in those with chest pain. Methods This was a prospective observational cohort study of consecutive, non-traumatic patients with chest pain. All-cause death was ascertained from multiple sources, including the CDC National Death Index registry. Six machine learning models were trained for survival analysis using 73 morphological electrocardiogram features (80% training with 10-fold cross-validation and 20% testing), followed by a variational Bayesian Gaussian mixture model to define distinct risk groups. The resulting classification performance was compared against the HEART score. Results The derivation cohort included 4015 patients (age 59 ± 16 years, 47% women). The mortality rate was 20.3% after a median follow-up period of 3.05 years (interquartile range 1.75–5.32). Extra Survival Trees outperformed other forecasting models, and the derived risk groups successfully classified patients into low-, moderate-, and high-risk groups (log-rank test statistic = 121.14, P < .001). This model outperformed the HEART score, reducing the rate of missed events by >90% with a negative predictive value and sensitivity of 93.4% and 85.9%, compared to 89.0% and 75.0%, respectively. In an independent external testing cohort (N = 3095, age 59 ± 15 years, 44% women, 30-day mortality 3.5%), patients in the moderate [odds ratio 3.62 (1.35–9.74)] and high [odds ratio 6.12 (2.38–15.75)] risk groups had significantly higher odds of mortality compared to those in the low-risk group. Conclusions The externally validated machine learning-based model, exclusively utilizing features from the 12-lead electrocardiogram, outperformed the HEART score in stratifying the mortality risk of patients with acute chest pain. This may have the potential to impact the precision of care delivery and the allocation of resources to those at highest risk of adverse events.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
Echan发布了新的文献求助10
4秒前
HeatherMI完成签到 ,获得积分20
6秒前
小吴完成签到,获得积分10
7秒前
香蕉觅云应助wyf1996采纳,获得10
7秒前
深情的楷瑞完成签到 ,获得积分10
11秒前
13秒前
15秒前
19秒前
22秒前
24秒前
wyf1996发布了新的文献求助10
26秒前
34秒前
36秒前
nn发布了新的文献求助10
36秒前
CodeCraft应助科研通管家采纳,获得10
39秒前
浮游应助科研通管家采纳,获得10
39秒前
浮游应助科研通管家采纳,获得10
39秒前
浮游应助科研通管家采纳,获得10
39秒前
浮游应助科研通管家采纳,获得10
39秒前
浮游应助科研通管家采纳,获得10
39秒前
打打应助科研通管家采纳,获得10
39秒前
40秒前
41秒前
45秒前
蜡笔小新发布了新的文献求助10
46秒前
小羊咩完成签到 ,获得积分0
49秒前
50秒前
Echan发布了新的文献求助10
53秒前
三岁完成签到 ,获得积分10
58秒前
年轻问柳发布了新的文献求助10
1分钟前
yanzilin完成签到 ,获得积分10
1分钟前
华仔应助Echan采纳,获得10
1分钟前
1分钟前
今后应助Z1070741749采纳,获得10
1分钟前
单纯的泥猴桃完成签到,获得积分10
1分钟前
1分钟前
1分钟前
LC完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5522538
求助须知:如何正确求助?哪些是违规求助? 4613518
关于积分的说明 14538888
捐赠科研通 4551221
什么是DOI,文献DOI怎么找? 2494081
邀请新用户注册赠送积分活动 1475062
关于科研通互助平台的介绍 1446465