Evaluation of Generative Artificial Intelligence Models in Predicting Pediatric Emergency Severity Index Levels

医学 置信区间 等级间信度 接收机工作特性 金标准(测试) 可靠性(半导体) 卡帕 急诊科 内科学 统计 数学 功率(物理) 评定量表 物理 几何学 量子力学 精神科
作者
Brandon Ho,Lu Meng,Xuan Wang,Russell Butler,Joshua Park,Dennis Ren
出处
期刊:Pediatric emergency care [Lippincott Williams & Wilkins]
标识
DOI:10.1097/pec.0000000000003315
摘要

Objective Evaluate the accuracy and reliability of various generative artificial intelligence (AI) models (ChatGPT-3.5, ChatGPT-4.0, T5, Llama-2, Mistral-Large, and Claude-3 Opus) in predicting Emergency Severity Index (ESI) levels for pediatric emergency department patients and assess the impact of medically oriented fine-tuning. Methods Seventy pediatric clinical vignettes from the ESI Handbook version 4 were used as the gold standard. Each AI model predicted the ESI level for each vignette. Performance metrics, including sensitivity, specificity, and F1 score, were calculated. Reliability was assessed by repeating the tests and measuring the interrater reliability using Fleiss kappa. Paired t tests were used to compare the models before and after fine-tuning. Results Claude-3 Opus achieved the highest performance amongst the untrained models with a sensitivity of 80.6% (95% confidence interval [CI]: 63.6–90.7), specificity of 91.3% (95% CI: 83.8–99), and an F1 score of 73.9% (95% CI: 58.9–90.7). After fine-tuning, the GPT-4.0 model showed statistically significant improvement with a sensitivity of 77.1% (95% CI: 60.1–86.5), specificity of 92.5% (95% CI: 89.5–97.4), and an F1 score of 74.6% (95% CI: 63.9–83.8, P < 0.04). Reliability analysis revealed high agreement for Claude-3 Opus (Fleiss κ: 0.85), followed by Mistral-Large (Fleiss κ: 0.79) and trained GPT-4.0 (Fleiss κ: 0.67). Training improved the reliability of GPT models ( P < 0.001). Conclusions Generative AI models demonstrate promising accuracy in predicting pediatric ESI levels, with fine-tuning significantly enhancing their performance and reliability. These findings suggest that AI could serve as a valuable tool in pediatric triage.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI5应助悦耳的芷珊采纳,获得10
1秒前
ddd发布了新的文献求助10
1秒前
Ryuki发布了新的文献求助10
2秒前
大力翠丝发布了新的文献求助10
2秒前
2秒前
所所应助龚成明采纳,获得10
4秒前
4秒前
lulu发布了新的文献求助10
5秒前
mwj发布了新的文献求助10
5秒前
ddd完成签到,获得积分10
6秒前
大力翠丝完成签到,获得积分10
7秒前
幸福妙柏发布了新的文献求助10
8秒前
9秒前
Ava应助落月铭采纳,获得10
9秒前
yy完成签到,获得积分10
11秒前
Cdws发布了新的文献求助10
11秒前
CipherSage应助mwj采纳,获得20
11秒前
11秒前
11秒前
yao完成签到,获得积分10
13秒前
完美世界应助藤原拓海采纳,获得10
13秒前
科研通AI5应助优雅的夏旋采纳,获得10
13秒前
朴素的海莲完成签到,获得积分20
13秒前
蝶舞天涯完成签到,获得积分10
15秒前
15秒前
zhscu完成签到,获得积分10
16秒前
科研通AI5应助追寻地坛采纳,获得10
16秒前
zjh发布了新的文献求助10
17秒前
薛妖怪发布了新的文献求助10
17秒前
落月铭完成签到,获得积分20
19秒前
fubaozhe发布了新的文献求助10
19秒前
仁爱的戎完成签到,获得积分10
19秒前
Herman完成签到 ,获得积分10
20秒前
20秒前
21秒前
22秒前
谨慎的凝丝完成签到 ,获得积分10
22秒前
美茬子完成签到,获得积分10
24秒前
24秒前
高分求助中
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3844484
求助须知:如何正确求助?哪些是违规求助? 3386857
关于积分的说明 10546388
捐赠科研通 3107336
什么是DOI,文献DOI怎么找? 1711707
邀请新用户注册赠送积分活动 824140
科研通“疑难数据库(出版商)”最低求助积分说明 774573