清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Diagnosis of Sacroiliitis Through Semi‐Supervised Segmentation and Radiomics Feature Analysis of MRI Images

骶髂关节炎 分割 人工智能 医学 无线电技术 支持向量机 计算机科学 放射科 磁共振成像 机器学习 模式识别(心理学)
作者
Lei Liu,Ruihan Zhong,Yuzhen Zhang,Haoyang Wan,S H Chen,Nanfeng Zhang,Jingjing Liu,Wei Mei,Ruibin Huang
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:62 (2): 563-572 被引量:1
标识
DOI:10.1002/jmri.29731
摘要

Background Sacroiliitis is a hallmark of ankylosing spondylitis (AS), and early detection plays an important role in managing the condition effectively. MRI is commonly used for diagnosing sacroiliitis, traditional methods often depend on subjective interpretation or limited automation which can introduce variability in diagnoses. The integration of semi‐supervised segmentation and radiomics features may reduce reliance on expert interpretation and the need for large annotated datasets, potentially enhancing diagnostic workflows. Purpose To develop a diagnostic model for sacroiliitis and bone marrow edema (BME) using semi‐supervised segmentation and radiomics analysis of MRI images. Study Type Retrospective cohort study. Population A total of 257 patients (161 males, 93 females; age 11–74 years), including 155 sacroiliitis and 175 BME patients. A total of 514 sacroiliac joint (SIJ) MRI images are analyzed, with 359 used for training and 155 for testing. Field Strength/Sequence 3.0 T, spin echo T1‐weighted imaging (T1WI) and short‐tau inversion recovery (STIR). Assessment SIJ segmentation is automated using the semi‐supervised segmentation‐based Unimatch framework. Manual delineation of SIJ regions of interest (ROIs) on T1WI images by an experienced radiologist (W.M., 10‐year experience) served as the reference standard for segmentation performance evaluation. Radiomics features from T1WI and STIR are used to train machine learning models, including support vector machine (SVM), logistic regression (LR), and light gradient boosting machine (LightGBM), for sacroiliitis and BME detection. Performance is assessed using area under the curve (AUC), sensitivity, specificity, and accuracy. The Dice coefficient is used to assess the performance of the semi‐supervised segmentation model on SIJ segmentation. Statistical Tests Performance is evaluated using receiver operating characteristic (ROC) curves and decision curve analysis (DCA). Result The Unimatch model achieves an average Dice coefficient of 0.859 for SIJ segmentation. AUCs for sacroiliitis detection are 0.84 (LR), 0.86 (SVM), and 0.78 (LightGBM), while for BME detection, AUCs are 0.73 (LR), 0.76 (SVM), and 0.70 (LightGBM). Data Conclusion This study demonstrates that semi‐supervised segmentation combined with radiomics features and machine learning models provides a promising approach for diagnosis of sacroiliitis and BME. Plain Language Summary This study aimed to improve the diagnosis of sacroiliitis and bone marrow edema in patients with ankylosing spondylitis. The researchers used a method that automatically segments MRI images and analyzes features from those images. By applying machine learning, they created models to help detect sacroiliitis and bone marrow edema more accurately. The results show that this approach can effectively assist in identifying these conditions, with the best accuracy for sacroiliitis and bone marrow edema reaching 81.2% and 74.2%, respectively. This method could help doctors make better decisions, offering a promising tool for improving diagnosis in clinical settings. Level of Evidence 3 Technical Efficacy Stage 2

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yoanna应助科研通管家采纳,获得30
8秒前
8秒前
Yoanna应助科研通管家采纳,获得30
8秒前
笑对人生完成签到 ,获得积分10
1分钟前
xue完成签到 ,获得积分10
1分钟前
Gary完成签到 ,获得积分10
1分钟前
Yoanna应助科研通管家采纳,获得30
2分钟前
Yoanna应助科研通管家采纳,获得30
2分钟前
Yoanna应助科研通管家采纳,获得30
2分钟前
Yoanna应助科研通管家采纳,获得30
2分钟前
Yoanna应助科研通管家采纳,获得30
2分钟前
Yoanna应助科研通管家采纳,获得30
2分钟前
奋斗的小笼包完成签到 ,获得积分10
2分钟前
2分钟前
自觉安荷完成签到 ,获得积分10
2分钟前
3分钟前
3分钟前
ARESCI发布了新的文献求助10
3分钟前
Orange应助ARESCI采纳,获得10
3分钟前
休斯顿完成签到,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
whj完成签到 ,获得积分10
3分钟前
3分钟前
闹心发布了新的文献求助10
4分钟前
胡国伦完成签到 ,获得积分10
4分钟前
英喆完成签到 ,获得积分10
4分钟前
5分钟前
5分钟前
木木圆发布了新的文献求助10
5分钟前
Yoanna应助科研通管家采纳,获得50
6分钟前
Yoanna应助科研通管家采纳,获得100
6分钟前
风停了完成签到,获得积分10
6分钟前
坚强鸵鸟完成签到,获得积分10
7分钟前
机灵的幼菱完成签到,获得积分10
7分钟前
Yoanna应助科研通管家采纳,获得20
8分钟前
wangfaqing942完成签到 ,获得积分10
8分钟前
laohei94_6完成签到 ,获得积分10
8分钟前
chcmy完成签到 ,获得积分0
8分钟前
123456777完成签到 ,获得积分0
8分钟前
薛家泰完成签到 ,获得积分10
9分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5149388
求助须知:如何正确求助?哪些是违规求助? 4345411
关于积分的说明 13530464
捐赠科研通 4187718
什么是DOI,文献DOI怎么找? 2296446
邀请新用户注册赠送积分活动 1296836
关于科研通互助平台的介绍 1241038