A Fuzzy Logic Control-Based Adaptive Gear-Shifting Considering Load Variation and Slope Gradient for Multi-Speed Automated Manual Transmission (AMT) Electric Heavy-Duty Commercial Vehicles

重型的 变化(天文学) 传输(电信) 模糊逻辑 汽车工程 计算机科学 工程类 控制工程 电气工程 人工智能 物理 天体物理学
作者
Shuxin Wang,Xiaodong Liu,Xuening Zhang,Yulong Zhao,Yanfeng Xiong
出处
期刊:Electronics [Multidisciplinary Digital Publishing Institute]
卷期号:13 (22): 4458-4458
标识
DOI:10.3390/electronics13224458
摘要

The current trend in pure electric heavy-duty commercial vehicles (PEHCVs) is the increasing utilization of automated manual transmission (AMT) to optimize driveline efficiency. However, the existing gear-shift schedule of AMT fails to account for crucial factors such as vehicle load and slope gradient, leading to frequent gear position changes during uphill driving, compromising driving comfort. This study proposes a novel approach incorporating the vehicle’s load and slope gradient to develop an enhanced gear-shift strategy based on fuzzy logic control to address this issue more effectively. Initially, a dynamic gear-shift schedule was formulated for a 6-speed AMT-equipped PEHCV, followed by an analysis of the impact of vehicle load and slope gradient on the gear-shift schedule. Subsequently, an adaptive gear-shift design framework was developed using fuzzy logic control, considering inputs such as acceleration pedal opening, vehicle load, and slope gradient. Simultaneously, the velocity correction factor was designed as an output to adjust the velocity of gear-shift points based on the dynamic gear-shift schedule. Finally, simulations were conducted under various operating scenarios, including different slope gradients, varying vehicle loads, changing pedal openings, and random scenarios to compare and validate the proposed gear-shift schedule against its predecessor—the previous dynamic gear-shift schedule. The results demonstrate that the proposed gear-shift schedule exhibits exceptional adaptability to various driving scenarios. The average acceleration time can be reduced by over 20%, while the gear-shift frequency within 200 s can be decreased by more than 30 times.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
两张完成签到,获得积分10
刚刚
SYLH应助天天向上采纳,获得10
1秒前
1秒前
hygge完成签到,获得积分10
1秒前
Wayne完成签到,获得积分0
2秒前
材料若饥完成签到,获得积分10
2秒前
2秒前
风起青禾完成签到,获得积分10
3秒前
两张发布了新的文献求助10
3秒前
桥豆麻袋完成签到,获得积分10
3秒前
3秒前
大气的火龙果完成签到 ,获得积分10
3秒前
4秒前
Orange应助乐观的阿这采纳,获得10
4秒前
芒果完成签到,获得积分10
4秒前
hxzhou完成签到,获得积分10
5秒前
yuzhu完成签到,获得积分10
5秒前
jj完成签到,获得积分10
5秒前
4Peace发布了新的文献求助30
5秒前
5秒前
6秒前
搞怪书兰完成签到,获得积分10
6秒前
牛不可完成签到,获得积分10
6秒前
领导范儿应助轻松笙采纳,获得10
6秒前
7秒前
活泼远山完成签到,获得积分10
7秒前
Dagong-xz完成签到,获得积分10
8秒前
一只大憨憨猫完成签到,获得积分10
8秒前
ql完成签到,获得积分10
8秒前
至黎完成签到,获得积分10
8秒前
xiyinzhiwu发布了新的文献求助50
8秒前
小蘑菇应助yy采纳,获得10
8秒前
爆米花应助ttchen_0714采纳,获得10
8秒前
9秒前
opticsLM完成签到,获得积分10
9秒前
10秒前
10秒前
Buxi完成签到,获得积分10
10秒前
catyew完成签到 ,获得积分10
10秒前
红红火火完成签到,获得积分10
10秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
The Healthy Socialist Life in Maoist China, 1949–1980 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785225
求助须知:如何正确求助?哪些是违规求助? 3330781
关于积分的说明 10248184
捐赠科研通 3046175
什么是DOI,文献DOI怎么找? 1671900
邀请新用户注册赠送积分活动 800891
科研通“疑难数据库(出版商)”最低求助积分说明 759868