Heterogeneous Graph Contrastive Learning with Augmentation Graph

图形 计算机科学 人工智能 理论计算机科学
作者
Kai Yang,Zequn Zhu,Yuan Liu,Zijuan Zhao
标识
DOI:10.2139/ssrn.4503481
摘要

Heterogeneous graph neural networks (HGNNs) have demonstrated promising capabilities in addressing various problems defined on heterogeneous graphs containing multiple types of nodes or edges. However, traditional HGNN models depend on label information and capture the local structural information of the original graph. In this paper, we propose a novel Heterogeneous Graph Contrastive Learning method with Augmentation Graph (AHGCL). Specifically, we construct an augmentation graph by calculating the feature similarity of nodes to capture latent structural information. For the original graph and the augmentation graph, we employ a shared Graph Neural Network (GNN) encoder to extract the semantic features of nodes with different meta-paths. The feature information is aggregated through a semantic-level attention mechanism to generate final node embeddings, which capture latent high-order semantic structural information. Considering the problems of label information for the real-world datasets, we adopt contrastive learning to train the GNN encoder for maximizing the common information between similar nodes from the original graph and the augmentation graph views. We conduct node classification experiments on four real-world datasets, AMiner, Freebase, DBLP, and ACM, to evaluate the performance of AHGCL. The results show that the proposed AHGCL demonstrates excellent stability and capability compared to existing graph representation learning methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tt完成签到,获得积分10
刚刚
刚刚
帅哥完成签到,获得积分10
刚刚
刚刚
zhuzhu发布了新的文献求助10
刚刚
STAN发布了新的文献求助10
1秒前
顺心凡发布了新的文献求助10
1秒前
tt完成签到,获得积分10
2秒前
2秒前
3秒前
烟花应助javalin采纳,获得10
3秒前
丘比特应助小兔子乖乖采纳,获得10
3秒前
5756发布了新的文献求助10
3秒前
aa完成签到,获得积分20
4秒前
壹1完成签到,获得积分10
5秒前
ZhihaoYang完成签到,获得积分10
5秒前
5秒前
ding应助哇哈哈哈哈哈采纳,获得10
6秒前
7秒前
CipherSage应助lysh采纳,获得10
7秒前
大个应助能量球采纳,获得10
8秒前
兔子不秃头y完成签到,获得积分10
10秒前
深情安青应助顺心凡采纳,获得10
11秒前
javalin发布了新的文献求助10
11秒前
11秒前
asdfqwer应助ww采纳,获得10
12秒前
爆米花应助yyj采纳,获得10
13秒前
希望天下0贩的0应助Moris采纳,获得10
15秒前
15秒前
SuperD完成签到,获得积分10
15秒前
liang发布了新的文献求助10
16秒前
16秒前
16秒前
guoke完成签到,获得积分10
17秒前
18秒前
18秒前
javalin完成签到,获得积分10
19秒前
20秒前
共享精神应助紫荆采纳,获得10
20秒前
Forya发布了新的文献求助10
20秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Understanding Interaction in the Second Language Classroom Context 300
Fractional flow reserve- and intravascular ultrasound-guided strategies for intermediate coronary stenosis and low lesion complexity in patients with or without diabetes: a post hoc analysis of the randomised FLAVOUR trial 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3810335
求助须知:如何正确求助?哪些是违规求助? 3354856
关于积分的说明 10372789
捐赠科研通 3071306
什么是DOI,文献DOI怎么找? 1686850
邀请新用户注册赠送积分活动 811269
科研通“疑难数据库(出版商)”最低求助积分说明 766510