Vehicle motion trajectory prediction fusion algorithm with driver adventurousness correction factor based on CS-LSTM

弹道 计算机科学 巡航控制 理论(学习稳定性) 控制理论(社会学) 功能(生物学) 模拟 算法 人工智能 控制(管理) 机器学习 物理 天文 进化生物学 生物
作者
Pengbo Xiao,Hui Xie,Long Yan
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering [SAGE Publishing]
卷期号:238 (12): 3541-3552 被引量:5
标识
DOI:10.1177/09544070231188783
摘要

Predicting the trajectories of adjacent vehicles plays an important role in the driving safety of adaptive cruise control system. It affects the safety and stability of the vehicle following the target vehicle during the vehicle cruising driving vehicle. However, due to the uncertainty of vehicle dynamics, driver character, and the complexity of the surrounding environment, vehicle trajectory prediction faces great challenges. Hence, a dynamic vehicle trajectory prediction system is proposed based on identifying driver intentions. First, based on a convolution LSTM, the driver adventurousness factor is introduced to describe the driver’s lane-change behavior heterogeneity and improve the accuracy of long-term lane-change trajectory prediction of adjacent lane vehicles. Second, the trajectory prototype predicted trajectory is updated by adjusting the minimum value function until the vehicle model corresponds to the planned sampling trajectory to improve the accuracy of the adjacent lane vehicle’s short-term lane-change trajectory prediction. Finally, the trajectories are fused using the trigonometric fusion algorithm, and the optimal trajectory is the output. The suggested strategy can predict lane-change intentions 2–5 s in advance. The prediction accuracy of the lane-change trajectory was approximately 21% higher than the normal prediction outcomes. The proposed method can be used to improve passenger comfort and the stability of a vehicle following a target vehicle that is separated from the adjacent lane vehicle.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
jing完成签到,获得积分10
3秒前
efls完成签到,获得积分10
3秒前
Eve丶Paopaoxuan应助YY采纳,获得30
4秒前
奇异完成签到 ,获得积分10
4秒前
4秒前
流川封完成签到,获得积分10
5秒前
传奇3应助Raphael Zhang采纳,获得10
5秒前
5秒前
Ann完成签到,获得积分10
5秒前
Rika7发布了新的文献求助10
7秒前
王灰灰1完成签到 ,获得积分10
7秒前
格兰德法泽尔完成签到,获得积分10
8秒前
8秒前
9秒前
子默完成签到,获得积分10
9秒前
日月同辉发布了新的文献求助10
10秒前
dyuguo3完成签到 ,获得积分10
10秒前
full完成签到,获得积分20
11秒前
自由山槐完成签到,获得积分10
11秒前
一番完成签到,获得积分10
12秒前
12秒前
爆米花应助羞涩的妙菱采纳,获得10
13秒前
Gavin_Li完成签到,获得积分10
13秒前
研友_VZG7GZ应助子默采纳,获得10
14秒前
14秒前
断鸿完成签到 ,获得积分10
15秒前
x小张完成签到,获得积分10
15秒前
16秒前
17秒前
瘦瘦谷槐完成签到,获得积分10
17秒前
平常芷波完成签到,获得积分10
17秒前
17秒前
18秒前
Lucas应助Nancy采纳,获得10
18秒前
科研通AI5应助Rika7采纳,获得10
18秒前
所所应助负责的方盒采纳,获得10
18秒前
小马甲应助uone采纳,获得10
19秒前
19秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3796325
求助须知:如何正确求助?哪些是违规求助? 3341295
关于积分的说明 10306023
捐赠科研通 3057851
什么是DOI,文献DOI怎么找? 1677972
邀请新用户注册赠送积分活动 805721
科研通“疑难数据库(出版商)”最低求助积分说明 762775