Charging and discharging optimization strategy for electric vehicles considering elasticity demand response

电气化 需求响应 电动汽车 网格 汽车工程 荷电状态 计算机科学 粒子群优化 模拟 电池(电) 工程类 电气工程 功率(物理) 物理 几何学 数学 量子力学 机器学习
作者
Liang Zhang,Chenglong Sun,Guowei Cai,Leong Hai Koh
出处
期刊:eTransportation [Elsevier BV]
卷期号:18: 100262-100262 被引量:304
标识
DOI:10.1016/j.etran.2023.100262
摘要

The electrification of urban transportation systems is a critical step toward achieving low-carbon transportation and meeting climate commitments. With the support of the Chinese government for the electric vehicle industry, the penetration rate of electric vehicles has continued to increase. In the context of large-scale electric vehicles connected to the grid, a coordinated charging-discharging system is particularly vital studied to avoid grid overload caused by customers' random charging. In this paper, a two-stage optimization strategy for electric vehicle charging and discharging that considers elasticity demand response based on particle swarm optimization was proposed, allowing the user to respond autonomously according to the reference value of the charge and discharge demand response and select the optimization weight independently to meet their travel and charging needs. To facilitate the user to balance the charging cost and the charging energy, we have introduced the virtual SOC to calculate the optimization result in advance. The results show that the optimized scheme can reduce the charging cost by 40%∼110%, and the load variance of the distribution network can be reduced by 19%∼100%, realizing the "win-win" benefit of the grid side and the user side. In addition, our research found that under the proposed strategy, the cost of battery loss caused by cyclic charging and discharging is negligible compared to the discharge benefit.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qiao应助柏不斜采纳,获得10
2秒前
领导范儿应助毛毛虫采纳,获得10
5秒前
8秒前
Akim应助DIngqin采纳,获得10
9秒前
10秒前
缓慢采柳发布了新的文献求助80
10秒前
活力酒窝完成签到,获得积分10
11秒前
自由水风发布了新的文献求助10
14秒前
14秒前
冷傲的冰绿完成签到,获得积分10
17秒前
CodeCraft应助无风采纳,获得10
20秒前
21秒前
21秒前
研友_n0gOKL发布了新的文献求助10
21秒前
Jenny发布了新的文献求助10
21秒前
周末万岁完成签到,获得积分10
23秒前
24秒前
打打应助尺八采纳,获得10
24秒前
25秒前
26秒前
26秒前
至秦完成签到,获得积分10
27秒前
28秒前
胡桃完成签到,获得积分10
29秒前
29秒前
卡布达发布了新的文献求助30
30秒前
30秒前
自由水风完成签到,获得积分10
31秒前
科研通AI2S应助Jenny采纳,获得10
31秒前
毛毛虫发布了新的文献求助10
31秒前
电催化托发布了新的文献求助50
33秒前
wxy发布了新的文献求助10
33秒前
毛豆爸爸发布了新的文献求助10
34秒前
MiriamYu完成签到,获得积分10
35秒前
35秒前
35秒前
桐桐应助一颗橙子采纳,获得10
37秒前
39秒前
莫道桑榆完成签到,获得积分10
40秒前
陈锦辞完成签到 ,获得积分10
40秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781669
求助须知:如何正确求助?哪些是违规求助? 3327234
关于积分的说明 10230111
捐赠科研通 3042093
什么是DOI,文献DOI怎么找? 1669791
邀请新用户注册赠送积分活动 799335
科研通“疑难数据库(出版商)”最低求助积分说明 758774