A Novel Event-Driven Spiking Convolutional Neural Network for Electromyography Pattern Recognition

计算机科学 卷积神经网络 模式识别(心理学) 人工智能 肌电图 线性判别分析 尖峰神经网络 稳健性(进化) 分类器(UML) 语音识别 人工神经网络 机器学习 物理医学与康复 医学 生物化学 化学 基因
作者
Mengjuan Xu,Xiang Chen,Antong Sun,Xu Zhang,Xun Chen
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:70 (9): 2604-2615 被引量:12
标识
DOI:10.1109/tbme.2023.3258606
摘要

Electromyography (EMG) pattern recognition is an important technology for prosthesis control and human-computer interaction etc. However, the practical application of EMG pattern recognition is hampered by poor accuracy and robustness due to electrode shift caused by repeated wearing of the signal acquisition device. Moreover, the user's acceptability is low due to the heavy training burden, which is caused by the need for a large amount of training data by traditional methods. In order to explore the advantage of spiking neural network (SNN) in solving the poor robustness and heavy training burden problems in EMG pattern recognition, a spiking convolutional neural network (SCNN) composed of cyclic convolutional neural network (CNN) and fully connected modules is proposed and implemented in this study. High density surface electromyography (HD-sEMG) signals collected from 6 gestures of 10 subjects at 6 electrode positions are taken as the research object. Compared to CNN with the same structure, CNN-Long Short Term Memory (CNN-LSTM), linear kernel linear discriminant analysis classifier (LDA) and spiking multilayer perceptron (Spiking MLP), the accuracy of SCNN is 50.69%, 33.92%, 32.94% and 9.41% higher in the small sample training experiment, 6.50%, 4.23%, 28.73%, and 2.57% higher in the electrode shifts experiment respectively. In addition, the power consumption of SCNN is about 1/93 of CNN. The advantages of the proposed framework in alleviating user training burden, mitigating the adverse effect of electrode shifts and reducing power consumption make it very meaningful for promoting the development of user-friendly real-time myoelectric control system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
龙泉发布了新的文献求助10
刚刚
刚刚
1秒前
1秒前
大模型应助LIN采纳,获得10
1秒前
共享精神应助栀蓝采纳,获得10
2秒前
2秒前
Jiaqi完成签到,获得积分10
2秒前
陈小桥完成签到,获得积分10
2秒前
utgu完成签到,获得积分10
3秒前
3秒前
搜集达人应助踏实芫采纳,获得10
3秒前
lalala发布了新的文献求助10
4秒前
现实的筮完成签到,获得积分10
4秒前
刘闰鑫关注了科研通微信公众号
4秒前
新风发布了新的文献求助10
4秒前
4秒前
4秒前
123456发布了新的文献求助50
4秒前
rice0601完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
徐啊徐完成签到,获得积分10
6秒前
传奇3应助LIN采纳,获得10
7秒前
7秒前
自由南珍完成签到,获得积分10
7秒前
7秒前
7秒前
hehehe发布了新的文献求助10
7秒前
bmhs2017应助于玕采纳,获得10
7秒前
阿亮发布了新的文献求助10
8秒前
邓阳发布了新的文献求助20
8秒前
追寻夏烟完成签到 ,获得积分10
9秒前
9秒前
向卉完成签到,获得积分10
9秒前
yzm11发布了新的文献求助30
9秒前
一颗小行星完成签到 ,获得积分10
9秒前
kaworul发布了新的文献求助30
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5402945
求助须知:如何正确求助?哪些是违规求助? 4521448
关于积分的说明 14085598
捐赠科研通 4435393
什么是DOI,文献DOI怎么找? 2434675
邀请新用户注册赠送积分活动 1426840
关于科研通互助平台的介绍 1405544