Deep Transfer Learning for Image Classification of Phosphorus Nutrition States in Individual Maize Leaves

人工智能 计算机科学 领域(数学) 自动化 生产力 鉴定(生物学) 学习迁移 农业工程 农业 营养缺乏 图像处理 机器学习 模式识别(心理学) 图像(数学) 数学 工程类 营养物 生物 植物 机械工程 宏观经济学 经济 纯数学 生态学
作者
Manuela Ramos-Ospina,Luis Gómez,Carlos Trujillo,Alejandro Marulanda-Tobón
出处
期刊:Electronics [Multidisciplinary Digital Publishing Institute]
卷期号:13 (1): 16-16
标识
DOI:10.3390/electronics13010016
摘要

Computer vision is a powerful technology that has enabled solutions in various fields by analyzing visual attributes of images. One field that has taken advantage of computer vision is agricultural automation, which promotes high-quality crop production. The nutritional status of a crop is a crucial factor for determining its productivity. This status is mediated by approximately 14 chemical elements acquired by the plant, and their determination plays a pivotal role in farm management. To address the timely identification of nutritional disorders, this study focuses on the classification of three levels of phosphorus deficiencies through individual leaf analysis. The methodological steps include: (1) using different capture devices to generate a database of images composed of laboratory-grown maize plants that were induced to either total phosphorus deficiency, medium deficiency, or total nutrition; (2) processing the images with state-of-the-art transfer learning architectures (i.e., VGG16, ResNet50, GoogLeNet, DenseNet201, and MobileNetV2); and (3) evaluating the classification performance of the models using the created database. The results show that the DenseNet201 model achieves superior performance, with 96% classification accuracy. However, the other studied architectures also demonstrate competitive performance and are considered state-of-the-art automatic leaf nutrition deficiency detection tools. The proposed method can be a starting point to fine-tune machine-vision-based solutions tailored for real-time monitoring of crop nutritional status.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NXK发布了新的文献求助10
刚刚
刚刚
1秒前
勤恳缘分关注了科研通微信公众号
1秒前
万能图书馆应助晶晶妹妹采纳,获得10
1秒前
1秒前
111发布了新的文献求助10
1秒前
zhaolee完成签到 ,获得积分10
2秒前
尊敬山兰发布了新的文献求助20
2秒前
yyy完成签到,获得积分10
2秒前
科研通AI5应助开朗馒头采纳,获得10
2秒前
4秒前
5秒前
欢快的芹菜完成签到,获得积分10
5秒前
ruby完成签到,获得积分10
6秒前
zzr真真97完成签到,获得积分10
6秒前
研友_n0gowL发布了新的文献求助10
6秒前
6秒前
unn完成签到,获得积分10
7秒前
little完成签到,获得积分10
7秒前
彭于晏应助ekdjk采纳,获得10
7秒前
7秒前
搜集达人应助光年采纳,获得10
7秒前
桃子完成签到,获得积分10
8秒前
HYHX完成签到,获得积分10
8秒前
JamesPei应助豆浆来点蒜泥采纳,获得10
9秒前
9秒前
十一一完成签到,获得积分10
9秒前
jiaziwei完成签到,获得积分10
9秒前
自觉冰巧完成签到,获得积分10
9秒前
10秒前
10秒前
打打应助长情的绿竹采纳,获得10
10秒前
VDC应助unn采纳,获得30
11秒前
无私静白发布了新的文献求助10
11秒前
11秒前
科研通AI5应助131949采纳,获得10
11秒前
12秒前
自觉冰巧发布了新的文献求助10
12秒前
陶陶发布了新的文献求助10
14秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
中国临床肿瘤学会(CSCO)儿童及青少年白血病诊疗指南2025 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805753
求助须知:如何正确求助?哪些是违规求助? 3350623
关于积分的说明 10349982
捐赠科研通 3066532
什么是DOI,文献DOI怎么找? 1683847
邀请新用户注册赠送积分活动 809142
科研通“疑难数据库(出版商)”最低求助积分说明 765393