Semi-supervised adversarial deep learning for capacity estimation of battery energy storage systems

电池(电) 电池容量 计算机科学 深度学习 锂离子电池 对抗制 估计 人工智能 航程(航空) 储能 功率(物理) 均方误差 机器学习 可靠性工程 工程类 数学 统计 系统工程 物理 量子力学 航空航天工程
作者
Jiachi Yao,Zhonghao Chang,Te Han,Jingpeng Tian
出处
期刊:Energy [Elsevier]
卷期号:294: 130882-130882 被引量:31
标识
DOI:10.1016/j.energy.2024.130882
摘要

Battery energy storage systems (BESS) play a pivotal role in energy management, and the precise estimation of battery capacity is crucial for optimizing their performance and ensuring reliable power supply. Deep learning methodologies applied to battery capacity estimation have exhibited exemplary performance. However, deep learning methods necessitate supervised training with a significant volume of labeled data, presenting challenges for data collection in industrial scenarios. Moreover, a diverse range of battery types in industrial settings makes it difficult to develop capacity estimation models for different types of batteries from scratch. To address these issues, a semi-supervised adversarial deep learning (SADL) method is proposed for lithium-ion battery capacity estimation. Initially, a subset of labeled lithium-ion battery data, coupled with a subset of unlabeled data, is collected. Voltage and current data are then transformed into capacity increment features. Subsequently, an adversarial training strategy is employed, subjecting labeled and unlabeled data to adversarial training to enhance the performance of SADL. Finally, the effectiveness of the SADL method in estimating the capacity of other lithium-ion batteries is analysed. Experimental results demonstrate that the SADL method accurately estimates the capacity of various battery types, showcasing an RMSE error of approximately 2%, surpassing the performance of other methods. The proposed SADL method emerges as a promising solution for the precise estimation of lithium-ion battery capacity in BESS.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助tlgt采纳,获得10
刚刚
小宇完成签到,获得积分10
刚刚
刚刚
飞飞完成签到,获得积分10
刚刚
无花果应助健康的幻珊采纳,获得30
刚刚
1秒前
畅快的不言完成签到,获得积分20
1秒前
77完成签到,获得积分20
2秒前
2秒前
今后应助小王哪跑采纳,获得10
3秒前
捡鹅卵石的笨蛋完成签到,获得积分10
3秒前
大胆诗云发布了新的文献求助10
3秒前
3秒前
未来完成签到,获得积分10
4秒前
77发布了新的文献求助10
4秒前
pluto应助科研通管家采纳,获得10
5秒前
默问应助科研通管家采纳,获得20
5秒前
汉堡包应助微风采纳,获得10
5秒前
赘婿应助科研通管家采纳,获得10
5秒前
Chream应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
雨姐科研完成签到,获得积分10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
小二郎应助科研通管家采纳,获得10
5秒前
嗯嗯完成签到 ,获得积分10
5秒前
在水一方应助科研通管家采纳,获得10
5秒前
李健应助科研通管家采纳,获得10
6秒前
BowieHuang应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
小药童应助sunny采纳,获得10
6秒前
Chream应助科研通管家采纳,获得10
6秒前
无花果应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
JamesPei应助科研通管家采纳,获得10
6秒前
Ava应助科研通管家采纳,获得10
6秒前
英姑应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得30
6秒前
6秒前
6秒前
Orange应助科研通管家采纳,获得10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5535691
求助须知:如何正确求助?哪些是违规求助? 4623521
关于积分的说明 14587624
捐赠科研通 4563996
什么是DOI,文献DOI怎么找? 2501374
邀请新用户注册赠送积分活动 1480430
关于科研通互助平台的介绍 1451750